一文速学数模-评价模型(二)熵权法实战确定评价指标权重

本文介绍了熵权法在数学建模和数据分析中的应用,详细阐述了熵权法的概念、使用步骤,包括数据预处理、计算指标信息熵,并提供了相关代码示例。通过熵权法可以确定评价指标的权重,但该方法存在不考虑指标间关系和对样本依赖性强的缺点,适用于业务经验明确且指标区分能力强的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、熵权法介绍

二、使用步骤

1.数据预处理

 2.计算指标信息熵

 3.相关代码

 三、实例运用

 四、总结

优点

缺点

适用范围


前言

博主参与八次数学建模大赛,其实数学建模和大数据分析有很多相似之处,可以说差不多是共通的。经历了这么多次比赛个人总结一些建模必备的数据分析方法是必须要完全掌握。本篇博客的愿景是希望我或者读者通过阅读这篇博客能够学会熵权法方法并能实际运用,而且能够记录到你的思想之中。当然个人不是数学专业对一些专业性的知识可能不是很了解,希望读者看完能够提出错误或者看法,博主会长期维护博客做及时更新。纯分享,希望大家喜欢。


一、熵权法介绍

在确定各项评价指标权重的算法中,熵权法在很多评价法作为计算指标权重的一只核心基础算法,如秩和比综合评价法RSR或是优劣解距离法TOPSIS。易于理解的话来讲,熵权法就是看该指标数据是否相对集中或是相对离散,要是基本上都差不多的数据,那么这些数据熵就很小,比较集中。说明在这个指标上面体现不出样本的差异性,导致这个指标并不是那么重要。所以该指标权重就小,相反数据差距很大,权重就大。

熵值法根据信息熵的定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小࿰

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fanstuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值