Summarizing Validation Messages

Summarizing Validation Messages
As you may have noticed, all the validation messages take up a lot of space
on the page梱ou may not want to sacrifice all that space for your
validation messages. ASP.NET provides its ValidationSummary control so that
you can display all the validation messages in one place as well as display
either nothing at all or a simple indicator next to each invalid control.
The sample page, shown in Figure 8.3, displays an asterisk next to each
invalid control and full error message text in the summary.

Figure 8.3. The ValidationSummary control lists all the ErrorMessage
properties for invalid controls in one place.


Adding the ValidationSummary control is simple: All you have to do is place
the control on your page. It automatically seeks out all the various
validation controls on the page, gathering the ErrorMessage property from
each control as necessary.

To set the text to be displayed within the validation controls themselves,
set the Text property for each control. This property overrides the
ErrorMessage property, and each control uses the Text property to determine
what to show within its own display. (If you don't specify the Text
property, as has been the case throughout this chapter, the controls
display their ErrorMessage property.) To add the ValidationSummary control
to your page, follow these steps:

Select the first validation control on the page and then Shift+click each
of the remaining validation controls, selecting them all.

In the Properties window, set the Text property (for all the selected
controls) to *.

Click directly above the Save button to place the insertion point within
the page. In the Toolbox window, double-click the ValidationSummary control
to insert an instance of this control.

Browse the page and then click Save without entering any data. Try entering
invalid data in some of the controls. When you submit the page, you should
see asterisks next to the invalid controls and a summary of the errors at
the bottom of the page.

TIP

If you want to modify the layout and behavior of the ValidationSummary
control, check out the DisplayMode property, which can be set to List,
BulletList, or Paragraph. Try them all to see how they affect the display.
In addition, you might check out the ShowMessageBox property, which allows
you to have up-level browsers (such as Internet Explorer) display a message
box alert containing the validation information.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Sure, here's an outline of the steps you'll need to take to complete this task: 1. Download the UCM dataset from the official source or any reputable repository. 2. Preprocess the dataset by splitting it into training, validation, and test sets. Use an 80-10-10 split, respectively. You can use a library like scikit-learn to do this. 3. Choose a suitable deep-learning algorithm for scene classification. Convolutional Neural Networks (CNNs) are a popular choice for image classification tasks like this. 4. Implement the chosen algorithm in Python, using appropriate libraries such as TensorFlow or PyTorch. 5. Train the classifier using the training set and tune the hyperparameters using the validation set. 6. Evaluate the trained classifier on the test set using the following metrics: accuracy, precision, recall, F1-score, and confusion matrix. You can use libraries like scikit-learn to compute these metrics. 7. Prepare a one-page report summarizing the results of your scene classification experiment and the architecture of your network. Include any relevant information such as which hyperparameters you tuned and which ones you used for the final model. Here's some sample code to get you started: ``` # Step 1: Download UCM dataset # TODO: Download dataset and extract files # Step 2: Preprocess dataset from sklearn.model_selection import train_test_split # TODO: Load dataset into memory X_train_val, X_test, y_train_val, y_test = train_test_split(X, y, test_size=0.1, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val, test_size=0.1, random_state=42) # Step 3: Choose deep-learning algorithm import tensorflow as tf from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense model = tf.keras.Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(256, 256, 3)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(256, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dense(256, activation='relu'), Dense(21, activation='softmax') ]) # Step 4: Implement algorithm in Python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Step 5: Train classifier history = model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val)) # Step 6: Evaluate trained classifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix y_pred = model.predict(X_test) y_pred_classes = np.argmax(y_pred, axis=1) y_test_classes = np.argmax(y_test, axis=1) accuracy = accuracy_score(y_test_classes, y_pred_classes) precision = precision_score(y_test_classes, y_pred_classes, average='macro') recall = recall_score(y_test_classes, y_pred_classes, average='macro') f1 = f1_score(y_test_classes, y_pred_classes, average='macro') confusion_mat = confusion_matrix(y_test_classes, y_pred_classes) print("Accuracy:", accuracy) print("Precision:", precision) print("Recall:", recall) print("F1-score:", f1) print("Confusion matrix:\n", confusion_mat) # Step 7: Prepare report # TODO: Write report summarizing results and network architecture ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值