2009 Google Code Jam Round 1C 题解

本文内容遵从CC版权协议 转载请注明出自:   http://blog.csdn.net/masterluo

 

Google Code Jam 的题解暂时就只有这些了,ROUND2我选择了睡觉,暂时也没有时间做……

 

Problem A site: http://code.google.com/codejam/contest/dashboard?c=189252#s=p0

思路:贪心算法。如果字符串中有N个不同的字符出现,表示至少为N进制。对于同一个数来说,进制越小,数值越小,对于同一个长度的数来说,高位越小,数值越小。故我们贪心分配每个字符所代表的数值即可。

 

 
#include <map>
#include <cstdio>

int T;
char str [ 88 ];
int mp [ 129 ];
bool used [ 66 ];
int ans [ 88 ];

int main() {
    //freopen("A-large-practice.in", "r", stdin);
    //freopen("out.txt", "w", stdout);
    scanf( "%d" , & T);

    for( int i = 0; i < T; ++ i) {
        scanf( "%s" , & str);
        int v = 1;
        for( int i = 0; i < 129; ++ i)
            mp [ i ] = - 1;

        memset( used , false , sizeof( used));
        int base = 1;
        for( int j = 0; str [ j ]; ++ j) {
            if( mp [ str [ j ] ] == - 1) {
                if( v) {
                    v = 0;
                    mp [ str [ j ]] = 1;
                    used [ 1 ] = true;
                } else {
                    for( int k = 0; k <= 64; ++ k) {
                        if( used [ k ] == false) {
                            used [ k ] = true;
                            mp [ str [ j ]] = k;
                            if( k > base)
                                base = k;
                            break;
                        }
                    }
                }
            }
        }
       
       
        for( int j = 0; str [ j ]; ++ j) {
            ans [ j ] = mp [ str [ j ]];
        }
        ++ base;
       
        unsigned long long tmp = 1;
        long long out = 0;
       
        for( int j = strlen( str) - 1; j >= 0; -- j) {
            out += tmp * ans [ j ];
            tmp *= base;
        }

        printf( "Case #%d: %lld /n " , i + 1 , out);

    }
    return 0;
}

 

Problem B site: http://code.google.com/codejam/contest/dashboard?c=189252#s=p1

思路:求二次函数的最小值,注意边界问题及为常函数或线性函数。对于某个时刻t,根据题中所经公式可以得到,坐标(x,y,z)只与t相关。由空间两点间距离可得到是关于t的二次函数y = ax^2 + bx + c (a ≥ 0)。如果a ≠ 0, 在 x = - b / (2a)取得极小值,如果x < 0,则在x = 0处取得极小值。如果a = 0,则为线性函数,易求得最近点。

 
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;

int T , n;
int main() {
    //double sigx, sigy, sigz, sigxx, sigyy, sigzz;
    //B-small-practice.in
    freopen( "B-large-practice.in" , "r" , stdin);
    freopen( "out.txt" , "w" , stdout);
    scanf( "%d" , & T);
    for( int i = 0; i < T; ++ i) {
        double sigx = 0 , sigy = 0 , sigz = 0 , sigxx = 0 , sigyy = 0 , sigzz = 0;
        int x , y , z , vx , vy , vz;
        scanf( "%d" , &n);
        for( int j = 0; j < n; ++ j) {
            scanf( "%d %d %d %d %d %d" , & x , & y , & z , & vx , & vy , & vz);
            sigx += x;
            sigy += y;
            sigz += z;
            sigxx += vx;
            sigyy += vy;
            sigzz += vz;
        }


        double a = 0 , b = 0 , c = 0;
        a = sigxx * sigxx + sigyy * sigyy + sigzz * sigzz;
        b = 2 * ( sigx * sigxx + sigy * sigyy + sigz * sigzz);
        c = sigx * sigx + sigy * sigy + sigz * sigz;
        double tmin;
        if( a == 0) {
            tmin = 0;
        } else {
            tmin = - b / ( 2 * a);
            if( tmin < 0)
                tmin = 0;
        }

        double dmin;
        dmin = a * ( tmin) * ( tmin) + b * tmin  + c;
        dmin /= (n * n);
        dmin = sqrt( dmin);

        printf( "Case #%d: %8lf %8lf /n " , i + 1 , dmin , tmin);

    }
}

 

Problem C site: http://code.google.com/codejam/contest/dashboard?c=189252#s=p2

思路:记忆化DP。对于要取得最优值,假设应该释放的排列为Q1, Q2, ……, Qn,我们在第一次分割后,1-P分解成二个子问题,1-(Q1-1)与(Q1+1)-P,这样就把问题分划为更小的问题,再递归进行求解,然而在递归的过程中,许多问题被重复计算,我们可以把己经计算出来的区间最小值记录下来,以后每次进行分割时,如果某个段己经求得最值就直接返回,否则进行递归查找。

 

 

 

#include <iostream>
#include <algorithm>
#include <map>
using namespace std;

int T;
int realse [ 101 ];
int P , Q;
map < pair < int , int > , int > dp;

int slove( int a , int b) {
    pair < int , int > pr( a , b);
    if( dp . find( pr) != dp . end())
        return dp [ pr ];

    int r = 0;
    for( int i = 0; i < Q; ++ i) {
        if( realse [ i ] >= a  && realse [ i ] <= b) {
            int tmp = (b - a) + slove( a , realse [ i ] - 1) + slove( realse [ i ] + 1 , b);
            if( ! r || tmp < r)
                r = tmp;
        }
    }
    dp [ pr ] = r;
    return r;
}

int main() {
    //freopen("C-large-practice.in", "r", stdin);
    //freopen("out.txt", "w", stdout);
    scanf( "%d" , & T);
    for( int i = 1; i <= T; ++ i) {
        scanf( "%d %d" , &P , & Q);
        for( int j = 0; j < Q; ++ j) {
            scanf( "%d" , & realse [ j ]);
        }
        sort( realse , realse + Q);
        dp . clear();
        int ans = slove( 1 , P);
        printf( "Case #%d: %d /n " , i , ans);


    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值