本文内容遵从CC版权协议 转载请注明出自: http://blog.csdn.net/masterluo
Google Code Jam 的题解暂时就只有这些了,ROUND2我选择了睡觉,暂时也没有时间做……
Problem A site: http://code.google.com/codejam/contest/dashboard?c=189252#s=p0
思路:贪心算法。如果字符串中有N个不同的字符出现,表示至少为N进制。对于同一个数来说,进制越小,数值越小,对于同一个长度的数来说,高位越小,数值越小。故我们贪心分配每个字符所代表的数值即可。
#include <cstdio>
int T;
char str [ 88 ];
int mp [ 129 ];
bool used [ 66 ];
int ans [ 88 ];
int main() {
//freopen("A-large-practice.in", "r", stdin);
//freopen("out.txt", "w", stdout);
scanf( "%d" , & T);
for( int i = 0; i < T; ++ i) {
scanf( "%s" , & str);
int v = 1;
for( int i = 0; i < 129; ++ i)
mp [ i ] = - 1;
memset( used , false , sizeof( used));
int base = 1;
for( int j = 0; str [ j ]; ++ j) {
if( mp [ str [ j ] ] == - 1) {
if( v) {
v = 0;
mp [ str [ j ]] = 1;
used [ 1 ] = true;
} else {
for( int k = 0; k <= 64; ++ k) {
if( used [ k ] == false) {
used [ k ] = true;
mp [ str [ j ]] = k;
if( k > base)
base = k;
break;
}
}
}
}
}
for( int j = 0; str [ j ]; ++ j) {
ans [ j ] = mp [ str [ j ]];
}
++ base;
unsigned long long tmp = 1;
long long out = 0;
for( int j = strlen( str) - 1; j >= 0; -- j) {
out += tmp * ans [ j ];
tmp *= base;
}
printf( "Case #%d: %lld /n " , i + 1 , out);
}
return 0;
}
Problem B site: http://code.google.com/codejam/contest/dashboard?c=189252#s=p1
思路:求二次函数的最小值,注意边界问题及为常函数或线性函数。对于某个时刻t,根据题中所经公式可以得到,坐标(x,y,z)只与t相关。由空间两点间距离可得到是关于t的二次函数y = ax^2 + bx + c (a ≥ 0)。如果a ≠ 0, 在 x = - b / (2a)取得极小值,如果x < 0,则在x = 0处取得极小值。如果a = 0,则为线性函数,易求得最近点。
#include <algorithm>
#include <cmath>
using namespace std;
int T , n;
int main() {
//double sigx, sigy, sigz, sigxx, sigyy, sigzz;
//B-small-practice.in
freopen( "B-large-practice.in" , "r" , stdin);
freopen( "out.txt" , "w" , stdout);
scanf( "%d" , & T);
for( int i = 0; i < T; ++ i) {
double sigx = 0 , sigy = 0 , sigz = 0 , sigxx = 0 , sigyy = 0 , sigzz = 0;
int x , y , z , vx , vy , vz;
scanf( "%d" , &n);
for( int j = 0; j < n; ++ j) {
scanf( "%d %d %d %d %d %d" , & x , & y , & z , & vx , & vy , & vz);
sigx += x;
sigy += y;
sigz += z;
sigxx += vx;
sigyy += vy;
sigzz += vz;
}
double a = 0 , b = 0 , c = 0;
a = sigxx * sigxx + sigyy * sigyy + sigzz * sigzz;
b = 2 * ( sigx * sigxx + sigy * sigyy + sigz * sigzz);
c = sigx * sigx + sigy * sigy + sigz * sigz;
double tmin;
if( a == 0) {
tmin = 0;
} else {
tmin = - b / ( 2 * a);
if( tmin < 0)
tmin = 0;
}
double dmin;
dmin = a * ( tmin) * ( tmin) + b * tmin + c;
dmin /= (n * n);
dmin = sqrt( dmin);
printf( "Case #%d: %8lf %8lf /n " , i + 1 , dmin , tmin);
}
}
Problem C site: http://code.google.com/codejam/contest/dashboard?c=189252#s=p2
思路:记忆化DP。对于要取得最优值,假设应该释放的排列为Q1, Q2, ……, Qn,我们在第一次分割后,1-P分解成二个子问题,1-(Q1-1)与(Q1+1)-P,这样就把问题分划为更小的问题,再递归进行求解,然而在递归的过程中,许多问题被重复计算,我们可以把己经计算出来的区间最小值记录下来,以后每次进行分割时,如果某个段己经求得最值就直接返回,否则进行递归查找。
#include <algorithm>
#include <map>
using namespace std;
int T;
int realse [ 101 ];
int P , Q;
map < pair < int , int > , int > dp;
int slove( int a , int b) {
pair < int , int > pr( a , b);
if( dp . find( pr) != dp . end())
return dp [ pr ];
int r = 0;
for( int i = 0; i < Q; ++ i) {
if( realse [ i ] >= a && realse [ i ] <= b) {
int tmp = (b - a) + slove( a , realse [ i ] - 1) + slove( realse [ i ] + 1 , b);
if( ! r || tmp < r)
r = tmp;
}
}
dp [ pr ] = r;
return r;
}
int main() {
//freopen("C-large-practice.in", "r", stdin);
//freopen("out.txt", "w", stdout);
scanf( "%d" , & T);
for( int i = 1; i <= T; ++ i) {
scanf( "%d %d" , &P , & Q);
for( int j = 0; j < Q; ++ j) {
scanf( "%d" , & realse [ j ]);
}
sort( realse , realse + Q);
dp . clear();
int ans = slove( 1 , P);
printf( "Case #%d: %d /n " , i , ans);
}
return 0;
}