GDKOI2005 商人的宣传
Description
Bruce是K国的商人,他在A州成立了自己的公司,这次他的公司生产出了一批性能很好的产品,准备宣传活动开始后的第L天到达B州进行新产品拍卖,期间Bruce打算将产品拿到各个州去做推销宣传,以增加其影响力。
K国有很多个州,每个州都与其他州相邻,但是K国对商人作宣传却有一些很奇怪的规定:
1、商人只能从某些州到达另外一些州,即连通路线是单向的,而且有些可能是到达不了的。
2、商人不允许在同一个州连续宣传两天或以上,每天宣传完必须离开该州。
3、商人可以多次来到同一个州进行宣传。
“我必须找出一条影响力最大的路线才行”,Bruce想,“我首先必须知道到底有多少这种符合规定的路线可供我选择。”现在Bruce把任务交给了你。并且出于考虑以后的需要,你还要帮他算出给出的两州之间的路线的总数。
Input
输入文件第一行包含三个整数n,m,L(1<=n,L<=100,1<=m<=n*(n-1)),分别表示K国的州数、连通路线的数量,以及多少天后必须到达B州。接下来有m行,每行一对整数,x,y(1<=x,y<=n),表示商人能从x州到达y州。
第m+2行为一个整数q( 1<=q<=100 ),表示Bruce有q个询问。下面q行每行两个整数A、B(1<=A,B <=n ),即A、B州的位置。
Output
输出文件包含q行,每行一个整数t,为所求的从A州到B州满足上述规定的路线总数。
输入数据中的询问将保证答案t在长整型范围内,即t<2^31。
Sample Input
4 5 6
1 2
2 3
3 4
4 1
2 4
2
1
4
Sample Output
2
1
题目大意:
在走L次的情况下询问A点到B点的最大方案数
题解:
DP+矩阵乘法+快速幂
F[i,j]表示从I到J的方案总数,则易得出F[i,j]=f[i,j]*f[k,j]+f[i,j]
利用矩阵乘法,对原图做L次即可得到结果。因为L较大,用快速幂优化。
快速幂:
1.递归。
2.将L转为二进制数,每次取平方值,遇到一就把指数加一。
const
maxn=100;
type
arr=array[1..maxn,1..maxn]of longint;
var
n,m,l,q,i,len,x,y:longint;
c:array[1..maxn]of shortint;
a,f,ans:arr;
procedure init;
var
i,j,x,y:longint;
begin
readln(n,m,l);
for i:=1 to m do
begin
readln(x,y);
a[x,y]:=1;
end;
x:=l;
while x>0 do
begin
inc(len);
c[len]:=x mod 2;
x:=x div 2;
end;
readln(q);
end;
function mul(u,v:arr):arr;
var
i,j,k:longint;
begin
fillchar(mul,sizeof(mul),0);
for i:=1 to n do
for j:=1 to n do
for k:=1 to n do
mul[i,j]:=mul[i,j]+u[i,k]*v[k,j];
end;
begin
init;
ans:=a;
for i:=len-1 downto 1 do
begin
ans:=mul(ans,ans);
if c[i]=1 then ans:=mul(ans,a);
end;
for i:=1 to q do
begin
readln(x,y);
writeln(ans[x,y]);
end;
end.