GDKOI2005 商人的宣传

本文详细介绍了GDKOI2005商人在K国不同州之间进行产品宣传和路线规划的过程,通过利用图论中的矩阵乘法和快速幂算法,有效地计算出了从起始州到目标州的最大宣传路线总数,同时提供了快速幂算法的优化思路。
摘要由CSDN通过智能技术生成

GDKOI2005 商人的宣传

Description

Bruce是K国的商人,他在A州成立了自己的公司,这次他的公司生产出了一批性能很好的产品,准备宣传活动开始后的第L天到达B州进行新产品拍卖,期间Bruce打算将产品拿到各个州去做推销宣传,以增加其影响力。
K国有很多个州,每个州都与其他州相邻,但是K国对商人作宣传却有一些很奇怪的规定:
1、商人只能从某些州到达另外一些州,即连通路线是单向的,而且有些可能是到达不了的。
2、商人不允许在同一个州连续宣传两天或以上,每天宣传完必须离开该州。
3、商人可以多次来到同一个州进行宣传。
“我必须找出一条影响力最大的路线才行”,Bruce想,“我首先必须知道到底有多少这种符合规定的路线可供我选择。”现在Bruce把任务交给了你。并且出于考虑以后的需要,你还要帮他算出给出的两州之间的路线的总数。

Input

输入文件第一行包含三个整数n,m,L(1<=n,L<=100,1<=m<=n*(n-1)),分别表示K国的州数、连通路线的数量,以及多少天后必须到达B州。接下来有m行,每行一对整数,x,y(1<=x,y<=n),表示商人能从x州到达y州。
第m+2行为一个整数q( 1<=q<=100 ),表示Bruce有q个询问。下面q行每行两个整数A、B(1<=A,B <=n ),即A、B州的位置。

Output

输出文件包含q行,每行一个整数t,为所求的从A州到B州满足上述规定的路线总数。
输入数据中的询问将保证答案t在长整型范围内,即t<2^31。

Sample Input

4 5 6
1 2
2 3
3 4
4 1
2 4
2
 4
 2
Sample Output
2
1


题目大意:

   在走L次的情况下询问A点到B点的最大方案数

题解:

  DP+矩阵乘法+快速幂

  F[i,j]表示从I到J的方案总数,则易得出F[i,j]=f[i,j]*f[k,j]+f[i,j]

  利用矩阵乘法,对原图做L次即可得到结果。因为L较大,用快速幂优化。

  快速幂:

  1.递归。

  2.将L转为二进制数,每次取平方值,遇到一就把指数加一。


  

const
  maxn=100;
type
  arr=array[1..maxn,1..maxn]of longint;
var
  n,m,l,q,i,len,x,y:longint;
  c:array[1..maxn]of shortint;
  a,f,ans:arr;

procedure init;
var
  i,j,x,y:longint;
begin
  readln(n,m,l);
  for i:=1 to m do
  begin
    readln(x,y);
    a[x,y]:=1;
  end;
  x:=l;
  while x>0 do
  begin
    inc(len);
    c[len]:=x mod 2;
    x:=x div 2;
  end;
  readln(q);
end;


function mul(u,v:arr):arr;
var
  i,j,k:longint;
begin
  fillchar(mul,sizeof(mul),0);
  for i:=1 to n do
    for j:=1 to n do
      for k:=1 to n do
        mul[i,j]:=mul[i,j]+u[i,k]*v[k,j];
end;

begin
  init;
  ans:=a;
  for i:=len-1 downto 1 do
  begin
    ans:=mul(ans,ans);
    if c[i]=1 then ans:=mul(ans,a);
  end;
  for i:=1 to q do
  begin
    readln(x,y);
    writeln(ans[x,y]);
  end;
end.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值