DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!
LLM-Enhanced Causal Discovery in Temporal Domain from Interventional Data
引言:AI在信息技术运营中的革命性应用
在现代信息技术运营(AIOps)的背景下,人工智能的引入不仅改变了我们管理和操作复杂信息系统的方式,更在根本上提升了操作效率和决策过程的质量。特别是在因果发现技术方面,AI的应用使得系统能够准确地识别出潜在的因果结构,从而有效地检测异常行为并确定系统故障的根本原因。例如,通过装备有AI的AIOps系统,可以有效地进行异常检测和根因分析等工作,极大地提高了工业操作的效率。
此外,时间因果发现作为一种新兴的方法,它直接基于观测数据识别变量之间的时间因果关系,这一技术的应用在近年来受到了极大的关注。它在动态系统中揭示因果依赖关系的潜力被广泛认可。例如,通过利用各种类型的干预数据,一些研究已经在时间因果关系的发现上取得了显著进展。
然而,现有的研究主要集中在合成数据集上,这些数据集严重依赖于干预目标,并忽略了真实世界系统中隐藏的复杂性和细微差别,未能在真实工业场景中进行因果发现。本文通过研究工业场景中的时间因果发现问题,解决了这一难题,提出了一种不依赖于干预目标的时间因果关系发现框架RealTCD,该框架能够利用系统中的文本信息发现时间因果关系。
论文概览
标题:LLM-Enhanced Causal Discovery in Temporal Domain from Interventional Data
作者:Peiwen Li, Xin Wang, Zeyang Zhang, Yuan Meng, Fang Shen, Yue Li, Jialong Wang, Yang Li, Wenwu Zhu
机构:
- Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Alibaba Cloud, Hangzhou, China
链接:https://arxiv.org/pdf/2404.14786.pdf
研究背景与动机
在现代工业应用中,如信息技术运维(AIOps)领域,因果发现技术扮演着至关重要的角色。它帮助揭示复杂信息系统内部的依赖关系和影响力网络,为异常检测、根因分析等下游工业任务提供了不可或缺的洞察。例如,通过准确识别系统内的因果结构,AIOps系统能有效地检测异常行为并确定系统故障的根本原因,从而提升操作效率和