解锁工业场景下的时序因果发现,清华&阿里巴巴&伯克利联合提出RealTCD框架:通过大语言模型提升发现质量!

本文介绍了RealTCD框架,一种利用大型语言模型和观测数据进行时间因果关系发现的新方法,尤其在无需干预目标的工业场景中展现出优势。该框架结合了基于分数的因果发现和LLM引导的元初始化,有效提升工业AI的效率和决策质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息!

LLM-Enhanced Causal Discovery in Temporal Domain from Interventional Data

引言:AI在信息技术运营中的革命性应用

在现代信息技术运营(AIOps)的背景下,人工智能的引入不仅改变了我们管理和操作复杂信息系统的方式,更在根本上提升了操作效率和决策过程的质量。特别是在因果发现技术方面,AI的应用使得系统能够准确地识别出潜在的因果结构,从而有效地检测异常行为并确定系统故障的根本原因。例如,通过装备有AI的AIOps系统,可以有效地进行异常检测和根因分析等工作,极大地提高了工业操作的效率。

此外,时间因果发现作为一种新兴的方法,它直接基于观测数据识别变量之间的时间因果关系,这一技术的应用在近年来受到了极大的关注。它在动态系统中揭示因果依赖关系的潜力被广泛认可。例如,通过利用各种类型的干预数据,一些研究已经在时间因果关系的发现上取得了显著进展。

然而,现有的研究主要集中在合成数据集上,这些数据集严重依赖于干预目标,并忽略了真实世界系统中隐藏的复杂性和细微差别,未能在真实工业场景中进行因果发现。本文通过研究工业场景中的时间因果发现问题,解决了这一难题,提出了一种不依赖于干预目标的时间因果关系发现框架RealTCD,该框架能够利用系统中的文本信息发现时间因果关系。

在这里插入图片描述

论文概览

标题:LLM-Enhanced Causal Discovery in Temporal Domain from Interventional Data

作者:Peiwen Li, Xin Wang, Zeyang Zhang, Yuan Meng, Fang Shen, Yue Li, Jialong Wang, Yang Li, Wenwu Zhu

机构

  • Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China
  • Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
  • Alibaba Cloud, Hangzhou, China

链接:https://arxiv.org/pdf/2404.14786.pdf

研究背景与动机

在现代工业应用中,如信息技术运维(AIOps)领域,因果发现技术扮演着至关重要的角色。它帮助揭示复杂信息系统内部的依赖关系和影响力网络,为异常检测、根因分析等下游工业任务提供了不可或缺的洞察。例如,通过准确识别系统内的因果结构,AIOps系统能有效地检测异常行为并确定系统故障的根本原因,从而提升操作效率和

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值