- 博客(2052)
- 收藏
- 关注
原创 【核磁共振T1映射】基于NLLS的新型算法从 SPGR 信号准确精确估计高分辨率的T1加权图像研究附Matlab代码
核磁共振成像(MRI)作为一种非侵入性、无电离辐射的医学成像技术,在疾病诊断、治疗评估和基础医学研究中发挥着不可替代的作用。其中,T1弛豫时间是组织学特性和病理生理状态的重要生物物理参数,其准确映射对于鉴别正常组织与病变组织、评估疾病进展以及指导临床治疗具有重要临床意义。然而,传统T1映射方法往往面临扫描时间长、图像分辨率低、对运动敏感以及计算复杂度高等挑战,这在很大程度上限制了其在临床实践中的广泛应用。
2025-05-24 07:43:01
243
原创 【核磁共振】用于准确和精确的VFA MRI的快速算法研究附Matlab代码
核磁共振成像(MRI)作为一种非侵入性、无辐射的医学影像技术,在临床诊断和科学研究中扮演着举足轻重的角色。其卓越的软组织对比度使其在肿瘤学、神经科学、心血管疾病等诸多领域展现出独特的优势。近年来,基于可变翻转角(VFA)的MRI技术因其在定量成像方面的巨大潜力而受到广泛关注。VFA MRI通过在不同翻转角下采集一系列数据,能够更精确地估计组织固有的弛豫时间(T1和T2)以及质子密度(PD),从而提供更为丰富的病理生理信息。
2025-05-24 07:41:59
673
原创 【航空和卫星图像中检测建筑物】使用gabor特征和概率的城市区域和建筑物检测研究附Matlab代码
在快速城市化和对精确地理空间信息日益增长的需求背景下,从航空和卫星图像中自动、高效地检测城市区域和建筑物已成为一个具有重大理论和实践意义的研究领域。传统的人工判读方法耗时、成本高昂且易受主观性影响,促使研究人员寻求更为先进的计算机视觉和模式识别技术。本论文旨在深入探讨一种基于Gabor特征和概率模型的城市区域和建筑物检测方法,其核心思想是利用Gabor滤波器在提取图像纹理特征方面的强大能力,并结合概率框架来量化检测的不确定性,从而实现对复杂城市环境的精确识别。
2025-05-24 07:34:29
500
原创 【轨迹跟踪】基于自适应跟踪(EAT)方法的无人机移动机器人轨迹跟踪附Matlab&Simulink
无人机(UAV)作为移动机器人平台,在众多领域展现出巨大的应用潜力,包括环境监测、应急响应、物流运输以及基础设施巡检等。然而,其在复杂动态环境下,特别是需要精确遵循预设轨迹的任务中,仍然面临严峻的技术挑战。传统的轨迹跟踪方法往往难以有效应对由风扰、载荷变化、模型不确定性以及执行器非线性等因素引起的误差积累。本文旨在深入探讨一种基于自适应跟踪(EAT)方法的无人机移动机器人轨迹跟踪策略。该方法通过引入实时参数估计和控制器增益自适应调整机制,显著提升了无人机在面对未知扰动和系统动态变化时的鲁棒性和跟踪精度。
2025-05-24 07:30:05
356
原创 【光学】用于声光任意飞秒激光脉冲整形附Matlab代码
在现代科学与工程领域,飞秒激光脉冲的精确操控与整形已成为众多前沿应用的关键技术。从高精度光谱学、超快动力学研究,到微纳加工、生物医学成像乃至信息传输,无一不要求对激光脉冲的强度、相位、频率乃至空间分布进行精细的调控。在众多脉冲整形方法中,基于声光效应的光学技术因其独特的优势,如高速、灵活、无机械运动部件等,在任意飞秒激光脉冲整形中扮演着越来越重要的角色。本文将深入探讨光学在声光任意飞秒激光脉冲整形中的理论基础、技术实现、优势与挑战,并展望其未来发展。
2025-05-24 07:27:33
656
原创 【光伏系统】将电流从直流转换为交流电的太阳能逆变器、太阳能跟踪系统来提高系统的整体性能及集成电池解决方案附Simulink仿真
光伏发电技术作为应对全球气候变化、实现可持续发展的重要途径,正日益受到国际社会的广泛关注。其核心在于将太阳辐射能转化为电能,而在此过程中,太阳能逆变器、太阳能跟踪系统以及集成电池解决方案则扮演着至关重要的角色,共同构成了现代高效光伏系统的三大支柱。它们不仅决定了光伏系统的运行效率、稳定性与可靠性,更深刻影响着其经济效益和市场竞争力。本文旨在深入探讨这三大关键组成部分在光伏系统中的核心作用,并展望其未来的发展趋势。首先,太阳能逆变器。
2025-05-24 07:23:54
502
原创 【故障诊断】【短时傅里叶变换】基于短时傅里叶变换的轴承故障诊断研究[西储大学数据]附Python代码
在现代工业生产中,机械设备的可靠性是确保生产效率和产品质量的关键因素。轴承作为旋转机械的核心部件,其运行状态直接影响设备的整体性能。轴承故障不仅会导致设备停机,造成巨大的经济损失,甚至可能引发严重的安全事故。因此,对轴承故障进行早期、准确的诊断,具有极其重要的工程意义和经济价值。近年来,随着传感器技术、信号处理技术和人工智能的飞速发展,基于振动信号的故障诊断技术已成为轴承故障诊断领域的主流方法。
2025-05-24 07:15:03
225
原创 【改进粒子群优化算法】基于惯性权重和学习因子动态调整的粒子群算法【期刊论文复现】附Matlab代码
在当今复杂多变的世界中,优化问题无处不在,从工程设计到经济管理,从机器学习到生物信息学,有效的优化算法是解决这些问题的关键。粒子群优化(Particle Swarm Optimization, PSO)算法,作为一种基于群体智能的启发式搜索算法,以其实现简单、收敛速度快以及对高维复杂问题有较好适应性等优点,在众多领域取得了广泛应用。然而,传统的PSO算法也存在一些固有的缺陷,例如容易陷入局部最优、后期收敛速度慢以及对参数敏感等问题。
2025-05-24 07:10:52
456
原创 【负荷预测】基于VMD-CNN-LSTM的负荷预测研究附Python代码
准确的电力负荷预测对于电力系统的安全、经济运行以及电力市场的有效管理具有至关重要的作用。然而,电力负荷数据通常具有非线性、非平稳和多尺度特性,传统预测方法难以捕捉其复杂规律。本文提出一种基于变分模态分解(Variational Mode Decomposition, VMD)、卷积神经网络(Convolutional Neural Network, CNN)和长短期记忆网络(Long Short-Term Memory, LSTM)的组合预测模型,旨在提高电力负荷预测的精度和鲁棒性。
2025-05-24 07:02:09
459
原创 【负荷预测】基于Transform-KAN的负荷预测研究附Python代码
在现代社会,能源是驱动经济发展和维持社会正常运转的核心要素。然而,能源的生产和消耗往往呈现出显著的时序波动性和不确定性。特别是在电力系统中,负荷预测的准确性直接关系到电网的稳定运行、发电计划的优化、电力资源的合理分配以及经济效益的提升。传统的负荷预测方法,如时间序列分析、统计回归模型等,在处理非线性、非平稳和高维数据时存在局限性。近年来,随着人工智能技术的飞速发展,深度学习模型在复杂时序数据处理方面展现出强大的能力。
2025-05-24 06:59:02
626
原创 【负荷预测】基于Transformer的负荷预测研究附Python代码
随着全球能源消耗的持续增长和电力系统复杂性的日益提升,准确的电力负荷预测对于保障电网稳定运行、优化能源调度、提升经济效益具有不可替代的重要性。传统的负荷预测方法,如统计模型和浅层机器学习模型,在处理电力负荷数据所固有的非线性、时变性和高噪声等复杂特征时面临挑战。近年来,深度学习技术在处理序列数据方面展现出卓越的性能,其中,由Google在2017年提出的Transformer模型以其独特的自注意力机制和并行处理能力,在自然语言处理领域取得了里程碑式的成功,并逐渐被引入到时间序列预测领域。
2025-05-24 06:58:00
447
原创 【负荷预测】基于CEEMDAN-CNN-LSTM的负荷预测研究附Python代码
在现代社会,电力作为驱动经济发展和维持日常生活运转的核心能源,其稳定可靠的供应至关重要。随着可再生能源的快速渗透和分布式能源系统的日益普及,电力系统面临的负荷波动性显著增加,这使得精准的负荷预测成为电网安全稳定运行、高效能源管理以及电力市场有效运作的关键支撑。传统的负荷预测方法,无论是基于统计学模型(如ARIMA、指数平滑)还是简单的机器学习模型(如SVM、决策树),在处理复杂、非线性和多变的电力负荷数据时,往往难以捕捉其深层特征和动态演变规律。
2025-05-24 06:55:25
348
原创 【负荷预测、电价预测】基于神经网络的负荷预测和价格预测附Matlab代码
在现代电力系统的运行与管理中,负荷预测与电价预测占据着举足轻重的地位。精准的预测不仅是电力系统高效、经济、可靠运行的基础,更是构建智能电网、促进可再生能源消纳、实现能源市场有效运作的关键。传统预测方法往往依赖于统计学模型和经验规则,在处理非线性、高维、动态变化的电力数据时,其局限性日益凸显。近年来,随着人工智能技术的飞速发展,以神经网络为代表的机器学习方法因其强大的非线性映射能力和自适应学习机制,在负荷预测与电价预测领域展现出巨大潜力,成为学术界和工业界的研究热点。
2025-05-24 06:53:43
341
原创 【风电功率预测】【多变量输入单步预测】基于TCN-GRU-Attention的风电功率预测研究附Matlab代码
随着全球能源转型和可持续发展理念的深入,风力发电作为一种清洁、可再生的能源形式,其在电力系统中的比重日益增长。然而,风电的间歇性和波动性给电网的稳定运行带来了挑战。精准的风电功率预测是保障电网安全、优化电力调度、提升风电消纳能力的关键。本文聚焦于风电功率预测领域,提出了一种基于时间卷积网络(TCN)、门控循环单元(GRU)和自注意力机制(Attention)的混合深度学习模型(TCN-GRU-Attention),以实现多变量输入的单步预测。
2025-05-24 06:52:01
533
原创 【风电功率预测】【多变量输入单步预测】基于TCN-BiGRU-Attention的风电功率预测研究附Matlab代码
在全球能源结构转型与可持续发展理念日益深入人心的背景下,风能作为一种清洁、可再生的重要能源,其在电力系统中的比重逐年攀升。然而,风电固有的间歇性与波动性给电网的稳定运行带来了显著挑战。精准的风电功率预测是缓解此类挑战、优化电网调度、提高风电消纳水平的关键。传统预测方法往往难以有效捕捉风电功率的复杂非线性特征及多变量间的深层关联。
2025-05-24 06:50:28
563
原创 【风电功率预测】【多变量输入单步预测】基于CNN-LSTM的风电功率预测研究附Matlab代码
随着全球气候变化的日益严峻和传统化石能源的枯竭,以风能为代表的可再生能源在全球能源结构中的地位日益重要。风力发电具有清洁、可再生等优点,但其固有的间歇性和随机性对电网的安全稳定运行带来了巨大的挑战。准确预测风电功率是有效调度电网、提高风电消纳能力的关键,对于促进风电的健康发展和构建新型电力系统具有至关重要的意义。传统的风电功率预测方法主要包括物理方法和统计方法。物理方法基于大气模型和风场模拟,需要大量的气象数据和计算资源,且对复杂地形适应性较差。
2025-05-23 10:06:09
324
原创 【非线性阀控制的强化学习】应用DDPG对非线性阀门最优控制研究附Matlab&Simulink仿真
阀门作为流体控制系统中的关键执行器,其性能直接影响到整个系统的稳定性、效率和安全性。尤其在面对非线性、强耦合以及外界干扰等复杂工况时,传统控制方法往往难以实现最优控制。近年来,强化学习作为一种无需精确模型、能够通过与环境交互自主学习最优策略的智能控制范式,为解决此类问题提供了新的思路。本文聚焦于非线性阀门的精确控制,深入探讨了如何应用基于深度确定性策略梯度(DDPG)的强化学习算法,对非线性阀门进行最优控制的研究。
2025-05-23 10:05:17
658
原创 【非欧几里得域信号的信号处理】使用经典信号处理和图信号处理在一维和二维欧几里得域信号上应用低通滤波器研究附Matlab代码
信号处理作为现代科学技术的核心领域,其应用范围几乎涵盖了所有信息交互和数据分析的场景。传统的信号处理理论,如傅里叶分析、时域滤波等,主要基于对定义在欧几里得空间上的信号进行分析和操作。这些信号通常表现为一维时间序列或二维图像,其采样点或像素之间具有规整的网格结构,便于应用卷积、傅里叶变换等数学工具。然而,现实世界中存在大量非欧几里得域信号,它们的数据点之间的关系更为复杂,通常以图结构或流形结构表示,例如社交网络、交通网络、传感器网络、蛋白质相互作用网络等。
2025-05-23 10:04:20
726
原创 【非参数标准化降水指数SPI】基于非参数框架计算SPI,该框架不需要假设具有代表性的参数分布附Matlab代码
干旱作为一种复杂的自然灾害,对农业、水资源、生态环境以及社会经济发展造成广泛而深远的影响。准确、及时地评估和监测干旱状况,是制定有效应对策略和减轻灾害损失的关键。标准化降水指数(SPI),由 McKee 等人在 1993 年提出,因其计算简便、适用范围广泛且对不同时间尺度下的干旱具有敏感性,已成为国际上普遍采用的干旱监测和评估工具之一。然而,传统的SPI计算方法依赖于对降水序列进行参数拟合,例如伽马分布或皮尔逊III型分布。这种方法假设降水数据服从特定的概率分布,并在拟合过程中需要估计相应的参数。
2025-05-23 10:03:09
538
原创 【多线路故障】含sop的配电网故障重构研究附Matlab代码
配电网是电力系统的重要组成部分,其稳定运行对国民经济和社会发展具有至关重要的意义。然而,复杂的运行环境和日益增长的负荷需求使得配电网故障发生的概率不断增加。多线路故障作为一种复杂且影响范围广的故障类型,对配电网的可靠性、安全性和经济性提出了严峻挑战。传统的故障重构方法往往侧重于单线路故障,对于多线路故障下的精准定位和快速隔离能力不足。此外,随着配电网自动化水平的提高,开关站操作程序(SOP)作为一种规范化的操作流程,在故障处理中扮演着越来越重要的角色。
2025-05-23 10:02:15
463
原创 【多微电网】基于粒子群优化算法的面向配电网的多微电网协调运行与优化附Matlab代码
随着分布式能源(Distributed Energy Resources, DERs)的快速发展和渗透率不断提高,传统配电网的运行模式面临巨大挑战。微电网(Microgrid, MG)作为一种有效的能量管理单元,通过整合局部地区的分布式发电、储能系统和可控负荷,能够提升电网的可靠性、经济性和智能化水平。然而,多个微电网在同一配电网区域内的并行运行,可能因相互作用产生新的问题,例如功率波动加剧、潮流分布复杂化以及局部电压越限等。
2025-05-23 10:00:50
547
原创 【多通道滤波】基于最小均方(McFxLMS)算法用于自适应多通道有源噪声控制(MCANC)应用研究附Matlab代码
噪声污染已成为现代社会日益严重的全球性问题,其对人类健康、生产效率以及生活质量的影响不容忽视。有源噪声控制(Active Noise Control, ANC)作为一种有效的噪声治理手段,通过生成反相声波来抵消原始噪声,在低频噪声控制领域展现出独特的优势。多通道有源噪声控制(Multichannel Active Noise Control, MCANC)系统通过配置多个参考麦克风、误差麦克风和次级声源,能够处理更加复杂和不均匀的声场,实现更广阔区域或特定区域的有效降噪。
2025-05-23 09:59:12
693
原创 【多式联运】基于模糊需求和模糊运输时间的多式联运路径优化研究附Matlab代码
多式联运作为一种将不同运输方式集成,实现货物从始发地到目的地全程运输的先进物流模式,对于提高运输效率、降低物流成本、减少环境污染具有重要意义。然而,在实际多式联运路径优化问题中,往往存在需求不确定性和运输时间模糊性等挑战,这使得传统的确定性优化模型难以准确描述现实情况并获得鲁棒的决策。本文旨在探讨基于模糊需求和模糊运输时间的多式联运路径优化问题,并深入研究相关的建模方法和求解技术。通过引入模糊集合理论,将不确定和模糊信息转化为可处理的数学模型,从而构建一个能够应对现实复杂性的优化框架。
2025-05-23 09:58:15
500
原创 【多式联运】基于AFO算法、GA和PSO算法求解不确定多式联运路径优化问题,同时和MATLAB自带的全局优化搜索器进行对比附Matlab代码
随着全球贸易的日益繁荣和供应链复杂性的不断提升,多式联运(Multimodal Transport)作为一种高效、灵活的货物运输方式,其重要性日益凸显。多式联运是指在货物运输过程中,至少使用两种或两种以上不同的运输方式(如海运、铁路、公路、航空、内河运输等),通过一次合同、一次支付,由同一承运人或联合承运人负责完成全程运输。
2025-05-23 09:57:15
391
原创 【多模态图像配准的CCRE】CCRE,两幅图像的交叉累积残差熵,CCRE比香农熵更通用,适用于多模态图像配准,并且对噪声更鲁棒附Matlab代码
图像配准作为图像处理领域的核心任务之一,旨在通过几何变换将不同时间、不同视角、不同传感器甚至不同模态采集的图像对齐。在众多配准方法中,基于信息论的方法凭借其无模型、能够处理非线性强度差异的优势,在医学影像、遥感、计算机视觉等领域得到了广泛应用。互信息(Mutual Information, MI)作为其中的代表,已成为处理单模态和部分多模态图像配准的标准方法。然而,随着多模态成像技术的飞速发展,不同模态图像之间的强度差异更加复杂且难以预测,传统的基于MI的方法有时会面临鲁棒性不足、易受噪声影响等问题。
2025-05-23 09:55:51
444
原创 【多模态非刚性Demon算法图像配准】非刚性 2D 和 3D 图像配准,使用 Demon流算法,扩展了模态转换研究附Matlab代码
图像配准作为医学图像分析、计算机视觉和遥感等领域中的核心技术,旨在找到一个最优的空间变换,使得两幅或多幅图像能够对齐。传统的图像配准方法多集中于单模态图像,然而,在实际应用中,我们经常需要对来自不同成像设备或采集协议的多模态图像进行配准,例如将MRI图像配准到CT图像,或将PET图像配准到MRI图像。多模态图像配准面临着不同模态之间强度或像素值没有直接线性关系的挑战,这使得基于强度相似度的传统配准方法往往失效。
2025-05-23 09:54:47
596
原创 【多变量输入超前多步预测】基于CNN的光伏功率预测研究附Matlab代码
光伏发电作为清洁能源的重要组成部分,在全球能源结构转型中扮演着日益重要的角色。然而,其发电功率受到多种环境因素的影响,呈现出高度的间歇性和波动性,这为电网的稳定运行带来了挑战。精确的光伏功率预测是优化电网调度、提高并网消纳能力、降低备用容量成本的关键技术。传统的预测方法,如时间序列分析、统计模型等,在处理非线性、多变量复杂系统时存在一定的局限性。近年来,随着人工智能技术的飞速发展,尤其是深度学习在特征提取和模式识别方面的强大能力,为解决光伏功率预测问题提供了新的途径。
2025-05-23 09:20:49
620
原创 【顶级EI复现】基于主从博弈的售电商多元零售套餐设计与多级市场购电策略附Matlab代码
在当前电力市场化改革深入推进的时代背景下,售电公司作为连接发电侧与用电侧的关键枢纽,其运营策略的优劣直接关系到电力市场的稳定运行、用户利益的保障以及售电公司自身的盈利能力。传统的电力零售模式往往较为单一,难以满足不同类型用户的多样化需求,且售电公司在面对多级电力批发市场时,其购电策略的制定亦面临着复杂性和不确定性。本文旨在深入探讨基于主从博弈理论,构建售电公司多元化零售套餐设计模型,并在此基础上研究其在多级电力市场中的最优购电策略,以期为售电公司的精细化运营和可持续发展提供理论支撑与实践指导。
2025-05-23 09:19:58
443
原创 【电力系统优化调度】计及源荷两侧不确定性的含风电电力系统低碳调度附Matlab代码
在全球气候变化日益严峻的背景下,构建以新能源为主体的新型电力系统已成为能源转型和实现“双碳”目标的关键举措。风电作为一种重要的可再生能源,具有清洁无碳、资源丰富的优势,但其固有的随机性和波动性给电力系统的安全稳定运行和优化调度带来了严峻挑战。与此同时,电力负荷,特别是随着电动汽车、智能家居等分布式能源和可控负荷的快速发展,也呈现出日益增强的不确定性。源荷两侧的不确定性相互叠加,使得传统基于确定性模型的电力系统调度方法难以适应新形势下的需求。
2025-05-23 09:19:00
654
原创 【电力系统短期负荷预测】基于ELM、白鲸算法优化ELM、鹭鹰算法优化ELM极限学习机的电力系统短期负荷预测研究附Matlab代码
电力负荷预测是电力系统安全稳定运行、经济合理规划和高效调度管理的关键基础。短期负荷预测作为其中重要的组成部分,其准确性直接影响着电力调度计划的制定、机组组合的优化以及电网运行的可靠性。传统的短期负荷预测方法,如时间序列模型、回归分析等,往往难以有效捕捉电力负荷数据复杂的非线性、非平稳性和随机性特征。近年来,随着人工智能技术的飞速发展,基于机器学习的方法在短期负荷预测领域展现出巨大的潜力。
2025-05-23 09:16:59
476
原创 【电磁】微带的有限元模拟附Matlab代码
微带线作为一种平面传输线结构,因其制备工艺简单、易于集成以及良好的宽带特性,在现代射频、微波以及毫米波电路中得到广泛应用。然而,随着频率的升高和电路集成度的提高,微带线的实际性能往往会受到各种效应的影响,如色散、辐射损耗、导体损耗、介质损耗以及耦合效应等。准确预测和分析微带线的这些特性对于高频电路设计至关重要。传统的解析方法或准静态近似方法在处理复杂结构或高频效应时存在局限性。
2025-05-22 09:18:05
865
原创 【地震防护盾:数值研究】利用地震晶体进行地震屏蔽附Matlab代码
地震,作为地球内部能量释放的自然现象,对人类社会构成了持续且巨大的威胁。其突发性、不可预测性及毁灭性,使得地震防护始终是土木工程、地球物理学以及灾害防治领域的核心课题。传统的地震工程学主要侧重于提高建筑物的抗震性能,通过结构设计、材料优化等手段来抵抗地震波的破坏。然而,这些方法本质上是被动防御,无法阻止地震波传播本身。
2025-05-22 09:16:37
897
原创 【抽水蓄能电站】基于粒子群优化算法的抽水蓄能电站的最佳调度方案研究附Matlab代码
随着全球能源结构的转型和可再生能源发电的快速发展,电力系统的稳定性和可靠性面临前所未有的挑战。间歇性和随机性的可再生能源接入使得电力系统的平衡更加复杂,对调峰、调频和备用容量的需求日益增加。抽水蓄能电站作为一种成熟且高效的储能技术,凭借其响应速度快、调节能力强、运行灵活等优势,在保障电力系统安全稳定运行、促进可再生能源消纳等方面发挥着不可替代的作用。如何制定最优的抽水蓄能电站调度方案,最大化其综合效益,是当前电力系统调度领域亟待解决的关键问题。
2025-05-22 09:15:38
726
原创 【车间调度】基于卷积神经网络的柔性作业车间调度问题的两阶段算法附Matlab代码
柔性作业车间调度问题(Flexible Job Shop Scheduling Problem, FJSP)是离散制造领域中的一个经典且复杂的NP-hard问题。相较于传统的作业车间调度问题(Job Shop Scheduling Problem, JSP),FJSP增加了工件可以在多台具有相同功能的机器上加工的灵活性,这显著增加了问题的解空间和复杂性。有效的柔性作业车间调度是提高生产效率、降低生产成本和提升企业竞争力的关键。
2025-05-22 09:14:36
464
原创 【超全】【15种算法求解路径规划】基于SSA、RRT、PRM、dijkstra等15种算法的移动机器人路径规划研究附Matlab代码
路径规划是移动机器人自主导航的核心问题之一。它旨在为机器人在给定环境中寻找一条从起点到终点的最优或可行路径,同时避开障碍物。随着移动机器人应用领域的不断拓展,对路径规划算法的效率、鲁棒性和实时性提出了更高的要求。本文系统地回顾并深入探讨了当前移动机器人路径规划领域常用的十五种代表性算法,涵盖了搜索算法、采样算法、智能优化算法以及其他新兴方法。通过对这些算法的基本原理、优缺点、适用场景进行详细阐述,并结合实际应用中的挑战,旨在为研究者和工程师提供一个全面了解和选择合适路径规划算法的参考框架。
2025-05-22 08:44:29
945
原创 【场景生成与研究】考虑时序相关性MC的场景生成与削减研究附Matlab代码
在电力系统、金融市场、供应链管理等诸多领域,不确定性因素是影响决策制定和风险评估的核心挑战。对这些不确定性进行建模和预测,特别是通过场景分析,成为应对风险、优化决策的重要手段。传统的场景生成方法,例如基于蒙特卡洛(Monte Carlo, MC)抽样的方法,在生成独立同分布的随机变量场景时表现良好。然而,许多实际系统中的不确定性因素并非孤立存在,它们往往具有显著的时序相关性,即当前时刻的状态与过去时刻的状态之间存在依赖关系。
2025-05-22 08:43:28
491
原创 【参数辨识】随机子空间辨识 (SSI)附Matlab代码
在现代控制理论与系统辨识领域,准确获取动态系统的数学模型是进行有效分析、设计和控制的前提。参数辨识作为一项关键任务,旨在通过观测系统的输入输出数据,或仅凭系统在自然激励下的响应数据,来确定系统的内部结构和参数。在诸多辨识方法中,随机子空间辨识(Stochastic Subspace Identification,SSI)凭借其处理多输入多输出(MIMO)系统、能够直接辨识状态空间模型以及对噪声具有较好的鲁棒性等优点,在工程实践中得到了广泛应用,尤其是在结构健康监测、模态分析和振动控制等领域。
2025-05-22 07:38:09
323
原创 【变分高斯Copula推断】基于Bernstein多项式的非参数转换则在描述单变量边缘后验时提供了充分的灵活性附Matlab代码
变分推断(Variational Inference, VI)作为一种高效的近似贝叶斯推断方法,近年来受到了广泛关注。它通过最小化变分分布与真实后验分布之间的KL散度,将复杂的积分计算转化为可优化的目标函数,从而在大数据和复杂模型下实现近似后验推断。在处理多元数据时,如何构建一个能够灵活捕捉变量间复杂依赖关系的变分后验分布是变分推断面临的关键挑战之一。
2025-05-22 07:36:39
806
原创 【WOA-LSTM】基于WOA优化 LSTM神经网络预测研究附Python代码
在当今数据驱动的时代,准确的序列数据预测在各个领域都具有至关重要的意义,包括金融市场预测、交通流量预测、电力负荷预测、气象预报以及工业过程控制等。长短期记忆(LSTM)神经网络作为循环神经网络(RNN)的一种变体,因其能够有效捕捉和记忆时间序列数据中的长期依赖关系而受到广泛关注,并在预测任务中展现出优异的性能。然而,LSTM网络的预测性能在很大程度上取决于其内部参数(如学习率、隐含层单元数、批处理大小等)的优化配置。传统的参数调整方法往往依赖于经验、试错或网格搜索等,效率低下且难以找到最优解。
2025-05-22 07:35:09
866
原创 【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】附Matlab代码
电力系统负荷预测是电力系统规划、调度与运行的关键环节,其预测精度直接影响电力系统运行的经济性、安全性和可靠性。传统的负荷预测方法往往难以有效捕捉复杂、非线性和非平稳的负荷序列特征,尤其在多变量耦合影响下,预测精度有待提高。
2025-05-22 07:33:26
726
e1e90185ca2f1eda312e7f604d38195c_b4125f83523abcb38acd9dc0deebd500.png
2025-04-18
9eb547eff8fb40e08e13c3e9a5666c15_229e3457f89c95afff24a8ee836049a4.png
2025-04-18
8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82.png
2025-04-18
d65689da7ed20e21882a634f8f5ce6c9_faad2735d293907fb32f7c5837f7302a.png
2025-04-18
8f907741d22986fe65290a9d496e5ea4_57521a98cb55dda51ceef30a7429ddcc.png
2025-04-18
### 中国企业级SaaS上市公司2023-2024年财务绩效回顾及未来展望、前言
2025-04-17
制造业2022年制造业上市公司高质量发展:城市群与主要城市百强企业分布分析
2025-04-17
### 【房地产行业】2023年房地产调控政策展望:供给端与需求端的政策空间及影响分析
2025-04-17
医美领域解码医美个性化未来:多元化与包容性的美学趋势及个性化表达系统分析探讨了医美
2025-04-17
【医疗美容领域】2023年中国医美市场洞察与趋势分析:人群特征、市场规模及未来发展方向
2025-04-17
### 美妆行业基于新浪新闻平台的品牌营销策略分析与实践案例解读
2025-04-15
### 抖音美妆成分榜:2023年3月美妆成分市场趋势与分析
2025-04-15
### 金融领域基于CPV模型的房地产信贷信用风险度量与预测:宏观经济指标在违约率分析中的应用Credit Portfolio View(
2025-04-15
### 【互联网商业领袖】雷军的创业历程与小米公司发展思考:从金山到小米的转型与创新
2025-04-15
美妆护肤国货护肤品牌抖音推广策略:霞飞品牌内容种草与精准营销方案设计国货护肤品牌
2025-04-15
6e61ae106bb49d5bd432b38c0430f4fe_241b393e3ed30f2dbd1ca35cbd7aa07d.png
2025-04-18
9534c841beb04fa36d24a5a14eec92b0_aa9bcdbed2f33d95a616c9b54f8b8aec.png
2025-04-18
69586e9e483b51958e0a16b48d98d5f5_1b074b731ec47fd72818eab27d7d2747.png
2025-04-18
424f70a533eeabde933fe91226b4e7bc_e8005c98457ea25bb6c155380f1b99f0.png
2025-04-18
9f148310e17f2960fea3ff60af384a37_098bb292f553b9f4ff9c67367379fafd.png
2025-04-18
95dad649280e96c6b6ff75a084f73301_O1CN01gCIP6s1Vqw8g7p0FC_!!0-fleamarket.jpg
2025-04-18
b99cc2c04a67cc010a8e3150e118c16a_816a1d8ad3ae3ce56dc5892049eed776.png
2025-04-18
3966cf73f291009b5ba84ca67c6cdbb2_8d5b691a494849f19e8aee42e7e7a66e.png
2025-04-18
70a4a05320ffa1461536a4c9d5295d05_8c3dbed411244c33a907f51fa2c6e5db.png
2025-04-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人