自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2277)
  • 收藏
  • 关注

原创 基于Parallel-Transformer-LSTM的自行车租赁数量预测研究附Matlab代码

随着城市化进程的加速和环保理念的普及,自行车租赁作为一种绿色出行方式在全球范围内迅速发展。准确预测自行车租赁数量对于优化资源配置、提升用户体验以及促进城市可持续交通发展具有重要意义。本研究提出了一种结合Parallel-Transformer和LSTM(长短期记忆网络)的混合深度学习模型,旨在提高自行车租赁数量预测的精度。该模型充分利用Transformer在捕捉序列数据长期依赖关系和并行处理方面的优势,同时结合LSTM在处理时间序列数据动态特征方面的能力。

2025-06-08 00:18:02 753

原创 基于Mealpy库优化CNN-BiLSTM-Attention电力负荷预测研究附Python代码

随着电力系统的智能化发展,准确的电力负荷预测对电网的安全稳定运行和经济调度至关重要。本文提出一种基于 Mealpy 库优化的 CNN-BiLSTM-Attention 模型,用于电力负荷预测。通过 Mealpy 库中的智能优化算法对 CNN-BiLSTM-Attention 模型的超参数进行优化,充分发挥卷积神经网络(CNN)提取空间特征、双向长短期记忆网络(BiLSTM)捕捉时间序列双向信息以及注意力机制(Attention)聚焦关键信息的优势。

2025-06-08 00:17:04 256

原创 基于LSTM的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种新型的城市出行方式,在全球范围内得到了迅速发展。准确预测共享单车的租赁需求对于优化车辆调度、提高运营效率和提升用户体验具有重要意义。本文旨在探讨基于长短期记忆网络(LSTM)的共享单车租赁预测模型。通过分析共享单车租赁数据的时间序列特性,结合外部影响因素,构建LSTM预测模型。实验结果表明,LSTM模型在共享单车租赁预测中具有较高的准确性和稳定性,能够有效捕捉数据中的非线性关系和长期依赖性,为共享单车运营管理提供科学依据。

2025-06-08 00:16:04 841

原创 基于LSTM-Attention的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种新型的城市交通方式,在解决“最后一公里”出行问题、缓解交通拥堵和减少碳排放方面发挥了重要作用。准确预测共享单车租赁需求对于优化车辆调度、提高运营效率和提升用户体验至关重要。传统的预测方法往往难以捕捉共享单车租赁数据的复杂时序依赖性和非线性特征。鉴于此,本文提出了一种基于长短期记忆网络(LSTM)与注意力机制(Attention)相结合的共享单车租赁预测模型。该模型能够有效地学习数据中的长期依赖关系,并通过注意力机制为不同时间步的输入赋予不同的权重,从而更准确地捕捉关键信息。

2025-06-08 00:15:05 376

原创 基于LSSVM的自行车租赁数量预测研究附Matlab代码

随着共享经济的兴起和城市交通理念的转变,公共自行车租赁系统在全球范围内得到了快速发展。有效预测自行车租赁数量对于优化资源配置、提升运营效率和满足用户需求具有重要意义。本研究旨在探讨基于最小二乘支持向量机(LSSVM)的自行车租赁数量预测模型,以期克服传统预测方法在处理非线性、高维度数据时存在的局限性。研究首先对自行车租赁系统的特性及影响因素进行了分析,然后详细阐述了LSSVM的基本原理、核函数选择以及参数优化方法。通过引入历史租赁数据、天气状况、节假日信息等多元特征,构建了LSSVM预测模型。

2025-06-08 00:14:15 610

原创 基于GRU的共享单车租赁预测研究(数据可换)附Python代码

随着城市化进程的加速和环保理念的普及,共享单车作为一种便捷、绿色的出行方式,在全球范围内得到了飞速发展。然而,共享单车系统的运营效率受到诸多因素的影响,其中租赁需求的准确预测是提升运营效率、优化资源配置的关键。本文旨在探讨基于门控循环单元(GRU)神经网络的共享单车租赁预测方法。GRU作为一种特殊的循环神经网络(RNN),在处理序列数据方面具有显著优势,能够有效捕捉时间序列数据中的长期依赖关系。

2025-06-08 00:13:19 571

原创 基于GRU-Attention的共享单车租赁预测研究(数据可换)附Python代码

随着共享单车行业的蓬勃发展,准确预测共享单车的租赁需求对优化资源配置、提升运营效率以及降低运营成本具有重要意义。本文提出一种基于门控循环单元(GRU)与注意力机制(Attention)相结合的模型,用于共享单车租赁数量的预测。通过对历史租赁数据、天气数据、时间数据等多源数据进行预处理,将其输入到 GRU-Attention 模型中进行训练与预测。

2025-06-08 00:12:35 689

原创 基于Gradient-boosting的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种新型的城市出行方式,在缓解交通拥堵、促进绿色出行方面发挥了重要作用。然而,其租赁量的波动性给运营管理带来了挑战。准确预测共享单车租赁量对于优化车辆调度、提高用户体验和降低运营成本至关重要。本文旨在探讨基于梯度提升(Gradient Boosting)算法的共享单车租赁预测模型。通过对历史租赁数据、天气数据、节假日信息等多维度特征的分析与挖掘,构建了有效的特征工程。在此基础上,详细阐述了梯度提升算法的原理,并将其应用于共享单车租赁预测。

2025-06-08 00:11:46 909

原创 基于ELM的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种新型城市出行方式,在全球范围内迅速普及,为解决城市“最后一公里”出行难题、缓解交通拥堵和减少碳排放做出了积极贡献。然而,共享单车系统的运营效率受到多种因素的影响,如天气、时间、节假日、潮汐效应等,导致车辆调度和投放面临诸多挑战。为了优化共享单车系统的运营管理,提高车辆利用率,精准预测共享单车租赁需求显得尤为重要。本研究旨在探讨基于极限学习机(Extreme Learning Machine, ELM)的共享单车租赁预测模型。

2025-06-08 00:10:57 233

原创 基于ELM-Adaboost的自行车租赁数量预测研究附Matlab代码

本研究针对自行车租赁数量预测的复杂性与不确定性,提出基于 ELM-Adaboost 的组合预测模型。通过收集多源数据并进行预处理,运用极限学习机(ELM)快速学习数据特征,结合 Adaboost 算法提升模型预测精度与泛化能力。实验结果表明,该模型在自行车租赁数量预测上较传统模型和单一算法具有更高的准确性与稳定性,为自行车租赁企业优化资源配置、制定运营策略提供科学依据。关键词自行车租赁数量预测;极限学习机;Adaboost;组合预测模型一、引言随着城市绿色出行理念的普及,自行车租赁行业迅速发展。

2025-06-08 00:10:07 792

原创 基于CNN-SVM的风电功率预测研究附Matlab代码

风电作为一种清洁、可再生的能源,在全球能源结构转型中扮演着越来越重要的角色。然而,风电的随机性和间歇性给电网的稳定运行带来了挑战,因此,准确的风电功率预测对于提高风电消纳能力和保障电网安全稳定运行至关重要。近年来,深度学习技术在各个领域取得了显著进展,为风电功率预测提供了新的思路。其中,卷积神经网络(CNN)因其在处理时间和空间相关性数据方面的优势,被广泛应用于风电功率预测。同时,支持向量机(SVM)作为一种经典的机器学习方法,在处理小样本、非线性及高维数据方面表现出色。

2025-06-08 00:09:13 937

原创 基于CNN-RVM的自行车租赁数量预测研究附Matlab代码

随着城市化进程的加速和环保理念的普及,自行车租赁系统已成为现代城市交通的重要组成部分。准确预测自行车租赁数量对于优化车辆调度、提升用户体验以及降低运营成本具有重要意义。传统的预测方法往往难以捕捉复杂的时间序列特征和非线性关系。本文提出了一种基于卷积神经网络(CNN)与相关向量机(RVM)相结合的自行车租赁数量预测模型(CNN-RVM)。该模型首先利用CNN强大的特征提取能力,从历史租赁数据中学习并捕捉关键的时间模式和局部特征;然后,将CNN提取到的高维特征输入到RVM中进行非线性回归预测。

2025-06-08 00:08:15 731

原创 基于CNN-RVM的风电功率预测研究附Matlab代码

随着全球能源结构的转型和环保意识的提升,风力发电作为一种清洁、可再生的能源,在全球范围内得到了快速发展。风电并网对电网的稳定运行提出了新的挑战,其中风电功率的波动性和不确定性是主要问题之一。因此,准确的风电功率预测对于保障电网安全、提高风电消纳能力、优化电力系统调度具有重要意义。传统的风电功率预测方法包括物理方法、统计方法和人工智能方法。物理方法依赖于气象预报数据和风电机组特性,但对气象预报精度和模型参数的准确性要求较高。

2025-06-08 00:07:22 272

原创 基于CNN-LSTM的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种便捷、环保的出行方式,在全球范围内得到了迅猛发展。如何准确预测共享单车的租赁需求,对于优化车辆调度、提升运营效率、缓解城市交通压力具有重要意义。传统的预测方法往往难以充分捕捉共享单车租赁数据的复杂时空特征。近年来,深度学习在处理时序数据方面展现出强大优势,其中卷积神经网络(CNN)在捕捉局部特征方面表现出色,而长短时记忆网络(LSTM)则擅长处理时间序列中的长期依赖关系。本文旨在探讨基于CNN-LSTM的共享单车租赁预测研究,并分析其在该领域的应用潜力。1. 共享单车租赁预测的挑战与机遇。

2025-06-08 00:06:34 809

原创 基于CNN-LSTM的风电功率预测研究附Matlab代码

本研究针对风电功率预测的非线性和不确定性问题,提出了一种基于CNN-LSTM的混合深度学习模型。通过结合卷积神经网络(CNN)的特征提取能力和长短期记忆网络(LSTM)的时序建模能力,有效捕捉风电数据的时空特征。实验结果表明,该模型在风电功率预测中具有较高的准确性和稳定性,能够为电力系统调度和风电并网提供可靠支持。

2025-06-08 00:05:38 742

原创 基于CNN-LSTM-Attention的共享单车租赁预测研究(数据可换)附Python代码

本研究针对共享单车租赁量预测中复杂非线性与动态变化的难题,构建基于 CNN-LSTM-Attention 的混合模型。通过对共享单车租赁历史数据、气象数据等多源信息进行清洗、特征提取等预处理,将处理后的数据输入模型训练。实验结果表明,该模型在预测精度上显著优于传统模型与单一神经网络模型,能够有效捕捉租赁数据特征,为共享单车企业优化资源调配、提升运营效率提供科学依据。关键词共享单车租赁预测;CNN;LSTM;Attention 机制;混合模型一、引言。

2025-06-07 16:50:13 883

原创 基于CNN-LSSVM的自行车租赁数量预测研究附Matlab代码

随着城市化进程的加速和环保理念的普及,自行车作为一种绿色、健康的出行方式,在全球范围内得到了广泛推广。许多城市推出了公共自行车租赁系统,旨在缓解交通拥堵、减少环境污染,并为市民提供便捷的出行选择。然而,自行车租赁数量受多种因素影响,如天气、节假日、时间段、地理位置等,呈现出复杂的非线性特征。准确预测自行车租赁数量,对于优化车辆调度、提高运营效率、满足用户需求具有重要意义。传统的时间序列预测方法,如ARIMA、SVR等,在处理非线性、非平稳数据时存在局限性。

2025-06-07 16:48:42 807

原创 基于CNN-GRU的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种便捷、环保的出行方式,在全球范围内得到了迅速发展。准确预测共享单车的租赁需求对于优化车辆调度、提高运营效率具有重要意义。本文提出了一种基于卷积神经网络(CNN)和门控循环单元(GRU)的混合模型,用于共享单车租赁预测。该模型充分利用CNN在捕捉局部特征方面的优势和GRU在处理序列数据方面的能力,有效地融合了时间序列数据中的空间特征和时间依赖性。

2025-06-07 16:47:41 789

原创 基于CNN-GRU-Attention的共享单车租赁预测研究(数据可换)附Python代码

本研究针对共享单车租赁量预测难题,提出基于 CNN-GRU-Attention 的混合模型。通过对多源共享单车租赁数据进行清洗、特征工程等预处理,将数据输入模型训练与预测。实验结果表明,该模型相比传统模型和单一神经网络模型,在共享单车租赁预测中能更精准捕捉数据特征与规律,有效提升预测准确性,为企业运营决策提供有力支持。关键词共享单车租赁预测;CNN;GRU;Attention 机制;混合模型一、引言共享单车作为城市绿色出行的重要方式,近年来在全球范围内迅速普及。

2025-06-07 16:46:48 786

原创 基于CNN-BiLSTM的自行车租赁数量预测研究附Matlab代码

自行车租赁服务在城市交通中扮演着日益重要的角色,为居民和游客提供了便捷、环保的出行方式。准确预测自行车租赁数量对于优化车辆调度、提升用户体验和管理运营成本至关重要。近年来,深度学习技术在时间序列预测领域展现出强大潜力,尤其是结合卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)的模型,为自行车租赁数量预测提供了新的思路。引言随着共享经济的兴起,城市自行车租赁系统在全球范围内得到了快速发展。这些系统通常由大量的自行车站点和可租赁的自行车组成,用户可以通过手机应用或刷卡等方式方便地租用和归还自行车。

2025-06-07 16:45:52 457

原创 基于CNN-BiLSTM的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种便捷、环保的出行方式,在全球范围内得到了迅速发展。准确预测共享单车租赁需求对于优化车辆调度、提高运营效率和用户满意度至关重要。本文提出了一种结合卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的混合模型,用于共享单车租赁预测。CNN层用于捕捉局部时空特征,而BiLSTM层则用于学习时间序列数据中的长期依赖关系。我们利用公开的共享单车租赁数据集对所提出的模型进行训练和评估,并将其与传统机器学习方法和单一深度学习模型进行比较。

2025-06-07 16:44:58 901

原创 基于CNN-BiLSTM的风电功率预测研究附Matlab代码

随着全球对可再生能源需求的日益增长,风力发电作为一种清洁、高效的能源形式,其重要性愈发凸显。然而,风电的间歇性和波动性对电网的稳定运行构成了挑战。因此,精准的风电功率预测对于优化电网调度、提高电网稳定性具有至关重要的意义。本文深入探讨了基于卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)融合模型的风电功率预测方法。该模型旨在充分挖掘风电时间序列数据中的空间特征和时间依赖性,以期实现更高精度的风电功率预测。

2025-06-07 16:44:03 931

原创 基于CNN-BILSTM-Attention风电功率预测研究附Matlab代码

针对风电功率预测中存在的非线性、波动性强等难题,本研究提出基于 CNN-BILSTM-Attention 的风电功率预测模型。通过收集气象数据、风机运行参数等多源数据并进行预处理,将数据输入模型训练。实验结果表明,该模型在预测精度上优于传统方法及单一神经网络模型,能为电力系统合理调度、提高风电消纳能力提供有力支持。关键词风电功率预测;CNN;BiLSTM;Attention 机制;混合神经网络一、引言随着全球对清洁能源需求的不断增长,风力发电作为一种清洁、可再生能源,在能源结构中所占比重日益增加。

2025-06-07 16:43:15 222

原创 基于CNN-BiLSTM-Attention的自行车租赁数量预测研究附Matlab代码

随着共享经济的快速发展,城市自行车租赁系统在全球范围内得到了广泛应用。对自行车租赁数量进行准确预测,不仅有助于优化车辆调度、提高运营效率,还能为城市交通规划提供数据支持。传统的预测方法往往难以捕捉复杂的时间序列特征和多维度影响因素。本文提出一种结合卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制(Attention)的混合深度学习模型,用于自行车租赁数量的精准预测。

2025-06-07 16:40:45 575

原创 基于CNN-BiLSTM-Attention的共享单车租赁预测研究(数据可换)附Python代码

本研究针对共享单车租赁量的准确预测问题,提出了一种基于 CNN-BiLSTM-Attention 的混合神经网络模型。通过对共享单车租赁相关数据进行预处理,包括数据清洗、特征工程等,将处理后的数据输入模型进行训练与预测。实验结果表明,该模型相较于传统预测模型,在共享单车租赁预测方面具有更高的准确性,能够为共享单车运营企业合理调配车辆、优化资源配置提供有效的决策支持。关键词共享单车租赁预测;CNN;BiLSTM;Attention 机制;混合神经网络一、引言。

2025-06-07 16:39:33 849

原创 基于CNN-BiLSTM-Adaboost的自行车租赁数量预测研究附Matlab代码

本研究为实现自行车租赁数量的精准预测,构建了基于卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)与 Adaboost 的集成预测模型。通过收集多维度的自行车租赁历史数据,经预处理后,利用 CNN 提取数据局部特征,BiLSTM 挖掘时序依赖关系,再借助 Adaboost 算法对多个弱预测器进行集成优化。

2025-06-07 16:38:38 840

原创 基于CNN-BiGRU的自行车租赁数量预测研究附Matlab代码

本研究针对自行车租赁数量预测问题,提出一种基于卷积神经网络(CNN)与双向门控循环单元(BiGRU)的混合预测模型。通过收集包含时间信息、天气状况、节假日等多维度的自行车租赁历史数据,经预处理后输入模型。CNN 提取数据的局部特征,BiGRU 捕捉数据的时序依赖关系,二者协同工作实现对自行车租赁数量的准确预测。实验结果表明,相较于传统模型及单一神经网络模型,该模型在预测精度上有显著提升,为自行车租赁企业优化资源配置和运营决策提供了有效的技术支持。关键词CNN;BiGRU;自行车租赁;数量预测;混合模型。

2025-06-07 16:37:43 220

原创 基于CNN-BiGRU的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种新型的城市交通工具,在解决“最后一公里”出行问题、缓解城市交通拥堵等方面发挥了重要作用。然而,共享单车的需求具有高度的时空动态性,准确预测其租赁量对于优化车辆调度、提升运营效率至关重要。本文提出了一种结合卷积神经网络(CNN)和双向门控循环单元(BiGRU)的混合模型,用于共享单车租赁量的预测。该模型充分利用CNN在捕获局部特征方面的优势和BiGRU在处理序列数据及捕捉长期依赖关系方面的能力,旨在提高预测精度。

2025-06-07 16:36:35 1005

原创 基于CNN-BiGRU-Attention的自行车租赁数量预测研究附Matlab代码

随着城市化进程的加速和人们环保意识的提高,共享单车作为一种便捷、绿色出行方式,在全球范围内迅速普及。共享单车系统的有效运营离不开对其未来租赁需求的准确预测。精准的预测不仅有助于优化车辆调度、减少资源浪费,还能提升用户体验。传统的预测方法,如时间序列分析、回归模型等,在处理共享单车租赁数据这种复杂、非线性的时空数据时,往往难以捕捉其深层特征。

2025-06-07 16:35:30 875

原创 基于CNN-BiGRU-Attention的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种便捷、环保的出行方式,在全球范围内得到了迅猛发展。然而,其租赁量的波动性给运营管理带来了挑战。为了提高共享单车的运营效率和用户满意度,精准预测共享单车租赁量显得尤为重要。本文旨在探讨基于CNN-BiGRU-Attention模型的共享单车租赁预测研究,并分析其在实际应用中的潜力。1. 引言随着城市化进程的加速和人们环保意识的提升,共享单车已成为城市交通体系中不可或缺的一部分。然而,共享单车租赁量受多种因素影响,如天气、时间、节假日、周边环境等,呈现出复杂的非线性特征。

2025-06-07 16:34:36 346

原创 基于CART的共享单车租赁预测研究(数据可换)附Python代码

本研究针对共享单车租赁量预测问题,构建基于分类与回归树(CART)算法的预测模型。通过收集共享单车租赁历史数据及相关环境信息,对数据进行清洗、特征工程处理后,利用 CART 算法构建回归树模型,并采用交叉验证优化模型参数。实验结果表明,CART 模型能够有效处理非线性数据,在共享单车租赁量预测中展现出良好的性能,为共享单车企业合理调度车辆、优化资源配置提供数据支撑。关键词CART 算法;共享单车;租赁预测;回归分析;特征工程一、引言共享单车作为共享经济的典型代表,极大地改变了城市居民的出行方式。

2025-06-06 16:01:03 912

原创 基于BP神经网络的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种新兴的城市出行方式,以其便捷、环保、经济等特点,在全球范围内迅速发展。共享单车的普及,在一定程度上缓解了城市交通拥堵问题,也为市民提供了多样化的出行选择。然而,共享单车运营过程中也面临着诸多挑战,其中之一便是车辆的合理调度与投放。准确预测共享单车租赁需求,对于优化车辆资源配置、提高运营效率、降低运营成本具有重要意义。本文旨在探讨基于BP神经网络的共享单车租赁预测方法。BP神经网络作为一种经典的神经网络模型,具有强大的非线性映射能力和自学习能力,在处理复杂数据预测问题上表现出良好的性能。

2025-06-06 15:59:58 771

原创 基于BiLSTM的自行车租赁数量预测研究附Matlab代码

随着共享经济的快速发展,城市自行车租赁系统已成为缓解交通拥堵、倡导绿色出行的重要组成部分。准确预测自行车租赁需求对于优化车辆调度、提高运营效率以及提升用户体验至关重要。传统的预测方法往往难以捕捉复杂的时间序列数据中的非线性特征。本文提出了一种基于双向长短时记忆网络(BiLSTM)的自行车租赁数量预测模型。BiLSTM网络能够有效学习时间序列数据中的长期依赖关系和双向上下文信息。我们利用历史租赁数据、天气条件、日期等多元特征构建数据集,并对数据进行预处理和特征工程。

2025-06-06 15:58:57 731

原创 基于BiLSTM的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种便捷、环保的出行方式,在全球范围内迅速普及。然而,共享单车的需求量受到多种因素的影响,如天气、时间、节假日等,导致其租赁量呈现出复杂的非线性变化。因此,对共享单车租赁量进行准确预测,对于优化车辆调度、提高运营效率、减少资源浪费具有重要意义。传统的共享单车租赁预测方法包括时间序列分析、回归模型等,但这些方法往往难以捕捉到数据中的复杂非线性关系和长期依赖性。近年来,随着深度学习技术的快速发展,循环神经网络(RNN)及其变种在处理序列数据方面展现出强大的优势。

2025-06-06 15:57:53 377

原创 基于BiLSTM-Attention的共享单车租赁预测研究(数据可换)附Python代码

本研究针对共享单车租赁量预测问题,提出基于双向长短期记忆网络(BiLSTM)与注意力机制(Attention)的预测模型。通过收集与共享单车租赁相关的历史数据,对数据进行预处理后输入模型进行训练与预测。实验结果表明,相较于传统预测模型,BiLSTM-Attention 模型能够更有效地捕捉数据中的时序特征与关键信息,显著提高了共享单车租赁量的预测精度,为共享单车企业优化运营策略、合理调配车辆资源提供了有力的数据支持与决策依据。关键词BiLSTM;Attention 机制;共享单车;租赁预测;时序数据。

2025-06-06 15:56:43 708

原创 基于BiLSTM-Adaboost的自行车租赁数量预测研究附Matlab代码

一、研究背景与目标1. 研究背景城市交通需求:共享单车作为绿色出行方式,租赁量受时间、天气、节假日、区域人流等多因素影响,需精准预测以优化调度。传统模型局限:线性模型(如 ARIMA)难以捕捉非线性时序特征;单一深度学习模型(如 LSTM)可能因数据噪声或复杂模式存在预测偏差。组合模型优势:BiLSTM(双向长短期记忆网络)擅长处理时序数据的前后依赖关系,Adaboost(自适应增强算法)通过集成弱学习器提升整体预测精度,二者结合可强化多维度特征提取与鲁棒性。2. 研究目标构建。

2025-06-06 15:55:28 558

原创 基于BiGRU的自行车租赁数量预测研究附Matlab代码

随着城市化进程的加速和环保理念的普及,共享单车作为一种便捷、绿色出行方式,在全球范围内得到了迅猛发展。对自行车租赁数量进行准确预测,不仅有助于优化车辆调度、提高运营效率,还能为城市交通规划提供数据支持。本文提出了一种基于双向门控循环单元(BiGRU)神经网络的自行车租赁数量预测模型。该模型能够充分捕捉时间序列数据中的双向依赖关系,有效提升预测精度。

2025-06-06 15:54:12 834

原创 基于BiGRU的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种便捷、环保的出行方式,在全球范围内得到了迅速发展。准确预测共享单车租赁需求对于优化车辆调度、提升运营效率、减少资源浪费具有重要意义。本文提出了一种基于双向门控循环单元(BiGRU)神经网络的共享单车租赁预测模型。该模型能够充分捕捉共享单车租赁数据中的时序依赖性和双向上下文信息。研究首先对共享单车租赁数据进行预处理,包括缺失值处理、异常值检测和特征工程。然后,构建BiGRU模型,并使用历史租赁数据对其进行训练和优化。

2025-06-06 15:50:36 479

原创 基于BiGRU-Attention的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种便捷、环保的出行方式,在全球范围内得到了迅速发展。准确预测共享单车租赁需求对于优化车辆调度、提高运营效率、降低运营成本具有重要意义。传统的预测方法往往难以捕捉复杂的时间序列特征和多源异构数据之间的关联性。本文提出了一种基于双向门控循环单元(BiGRU)和注意力机制(Attention)的共享单车租赁预测模型。该模型能够有效地学习租赁数据中的长期依赖关系,并通过注意力机制为不同时间步的输入赋予不同的权重,从而更精确地捕捉关键特征。

2025-06-06 15:49:34 729

原创 基于Bagging的共享单车租赁预测研究(数据可换)附Python代码

共享单车作为一种便捷、环保的出行方式,在全球范围内迅速普及。准确预测共享单车租赁需求,对于优化车辆调度、提升运营效率和用户满意度至关重要。本文旨在探讨基于Bagging(Bootstrap Aggregating)集成学习方法在共享单车租赁预测中的应用,并分析其潜在优势。1. 共享单车租赁预测的挑战共享单车租赁数据具有显著的非线性和复杂性,影响因素众多,包括时间(小时、日期、星期、月份、节假日)、天气(温度、湿度、风速、天气状况)、地理位置(站点密度、周边设施)以及特殊事件(演唱会、体育赛事)等。

2025-06-06 15:48:15 250

UDQsinepwm_1p_UPFC.png

UDQsinepwm_1p_UPFC

2025-04-18

70a4a05320ffa1461536a4c9d5295d05_8c3dbed411244c33a907f51fa2c6e5db.png

70a4a05320ffa1461536a4c9d5295d05_8c3dbed411244c33a907f51fa2c6e5db

2025-04-18

3966cf73f291009b5ba84ca67c6cdbb2_8d5b691a494849f19e8aee42e7e7a66e.png

3966cf73f291009b5ba84ca67c6cdbb2_8d5b691a494849f19e8aee42e7e7a66e

2025-04-18

e1e90185ca2f1eda312e7f604d38195c_b4125f83523abcb38acd9dc0deebd500.png

e1e90185ca2f1eda312e7f604d38195c_b4125f83523abcb38acd9dc0deebd500

2025-04-18

9eb547eff8fb40e08e13c3e9a5666c15_229e3457f89c95afff24a8ee836049a4.png

9eb547eff8fb40e08e13c3e9a5666c15_229e3457f89c95afff24a8ee836049a4

2025-04-18

8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82.png

8c71b76fb2ec10cf50fc6b0308d3dcfc_9545878e2b97a84b2e089ece58da9e82

2025-04-18

8f907741d22986fe65290a9d496e5ea4_57521a98cb55dda51ceef30a7429ddcc.png

8f907741d22986fe65290a9d496e5ea4_57521a98cb55dda51ceef30a7429ddcc

2025-04-18

d65689da7ed20e21882a634f8f5ce6c9_faad2735d293907fb32f7c5837f7302a.png

d65689da7ed20e21882a634f8f5ce6c9_faad2735d293907fb32f7c5837f7302a

2025-04-18

周梁伟-大模型在融合通信中的应用实践.pdf

周梁伟-大模型在融合通信中的应用实践

2025-04-18

仲量联行-负责任的房地产:实现社会价值,赋能建筑环境,创造积极的环境和社会影响.pdf

仲量联行-负责任的房地产:实现社会价值,赋能建筑环境,创造积极的环境和社会影响

2025-04-18

### 中国企业级SaaS上市公司2023-2024年财务绩效回顾及未来展望、前言

内容概要:本文聚焦中国企业级SaaS上市公司2023-2024年的财务绩效,通过详尽的数据分析和行业趋势展望,揭示了该领域的发展现状与未来方向。文章指出,尽管收入和毛利持续增长,但整体毛利率偏低,销售费用率高企,研发投入大,盈利艰难,资产周转效率下降,现金流承压等问题普遍存在。针对这些问题,提出了提升客户价值、深耕行业、延伸商业价值、审视并购可能性、盈利模式多样化、抓住AIGC(生成式人工智能)机遇、把握出海机遇以及积极利用资本市场等策略建议。未来,企业级SaaS市场将围绕中小企业需求、细分领域产品爆发式增长及行业生态协同化发展。 适用人群:对中国企业级SaaS市场感兴趣的投资者、企业管理者、行业分析师以及相关从业人员。 使用场景及目标:①帮助投资者评估企业级SaaS上市公司的投资价值;②为企业管理者提供战略规划和运营管理的参考;③为行业分析师提供详实的数据支持和趋势预测;④为从业人员提供职业发展和技能提升的方向。 其他说明:本文基于2024年10月底的财务数据,结合安永的研究分析,提供了对企业级SaaS市场的深入洞察。文中还强调了SaaS企业在数字化转型中的重要作用,并呼吁行业内企业积极应对挑战,把握发展机遇。

2025-04-17

中国上市公司协会:2022年中国上市公司董事会秘书履职报告.pdf

中国上市公司协会:2022年中国上市公司董事会秘书履职报告

2025-04-17

制造业2022年制造业上市公司高质量发展:城市群与主要城市百强企业分布分析

内容概要:本文档展示了2022年中国制造业上市公司百强企业在不同城市群和城市的分布情况。从城市群角度看,百强企业主要集中在长三角(19家)、粤港澳(16家)和京津冀(11家)三大国家级城市群,这些地区凭借强大的发展基础、完善的产业链和优越的营商环境成为制造业高质量发展的领头羊。从具体城市分布来看,深圳和北京各有10家企业上榜,上海有9家。其中,深圳以比亚迪、中兴等大企业为代表,在营收规模上位居全国第一;北京依托科技和人才优势支持企业发展;上海则在高端制造业特别是集成电路领域处于领先地位。 适合人群:对中国经济地理、制造业发展趋势感兴趣的读者,以及从事相关行业研究的专业人士。 使用场景及目标:①了解中国制造业区域布局和发展趋势;②为政策制定者提供参考依据;③为企业投资决策提供数据支持。 阅读建议:建议重点关注各城市群和城市的具体数据,结合当地产业特色和发展优势进行分析,以便更好地理解中国制造业的空间分布规律及其背后的原因。

2025-04-17

### 【房地产行业】2023年房地产调控政策展望:供给端与需求端的政策空间及影响分析

内容概要:本文探讨了2023年中国房地产调控政策的空间及其影响。文章指出,中央经济工作会议将住房改善列为内需重点领域之一,强化了市场对未来政策的预期。供给端政策主要集中在“稳住增量,解决存量”,通过规范预售资金监管、支持优质房企融资、推动REITs融资等手段来“保交楼,稳主体”。需求端政策则强调支持刚性和改善性住房需求,但受“房住不炒”政策框架限制,政策力度不及2014-2015年周期,且在当前宏观环境下,居民购房意愿和能力均有所减弱,导致政策效果有限。总体来看,政府更可能在供给端持续发力,通过多种方式稳定企业运营和保障项目交付。 适合人群:房地产从业者、政策研究者、投资者以及关注房地产市场的相关人员。 使用场景及目标:①理解当前房地产调控政策的方向和重点;②评估供给端和需求端政策的具体措施及其潜在影响;③分析居民购房意愿和能力的变化趋势及其背后的原因。 其他说明:报告由亿翰智库发布,基于公开信息撰写,旨在客观反映企业经营情况,但不构成投资建议。报告版权归亿翰智库所有,未经授权不得私自修改或传播。

2025-04-17

新世纪评级:2023年房地产行业信用回顾与2024年展望报告.pdf

新世纪评级:2023年房地产行业信用回顾与2024年展望报告

2025-04-17

同策:2022年郑州房地产市场分析报告.pdf

同策:2022年郑州房地产市场分析报告

2025-04-17

医美领域解码医美个性化未来:多元化与包容性的美学趋势及个性化表达系统分析探讨了医美

本文深入探讨了医美行业的个性化趋势及其对求美者和社会的影响。文章首先介绍了个性化在医美中的重要性,强调了个性化是一个多层次、多面向的概念,涉及个人认同、内在驱动、社会联系等方面。随后,文章详细分析了个性化带来的正向回馈和限制,指出个性化能够增强自信、促进自我表达,但也面临着来自社会规范和技术发展的挑战。此外,文章还探讨了不同文化背景下个性化表达的差异,特别是在集体主义和个人主义文化中的表现。最后,文章提出了医美行业如何更好地支持个性化表达的具体建议,包括提供个性化咨询服务、推动身份认同和包容性。

2025-04-17

【医疗美容领域】2023年中国医美市场洞察与趋势分析:人群特征、市场规模及未来发展方向

报告由Mob研究院发布,聚焦2023年医美人群的现状与趋势。尽管社会上“拒绝容貌焦虑”的呼声很高,但仍有近80%的人存在容貌焦虑,相关话题热度居高不下。2017年至2022年,中国医美市场规模从1124亿元增长到2300亿元,预计2023年将达到2354亿元,增幅显著。医美产业链结构完善,分为药械生产、整形服务和获客渠道三个部分。轻医美因其安全性和便捷性广受欢迎,非手术订单量占比超过80%。牙齿正畸等项目也迅速发展。医美用户中,女性占主导地位,年龄主要集中在25岁以上,企业白领和已婚人士为主要群体。医美人群收入水平差异较大,但并不影响其消费意愿。医美项目中,纹绣、牙齿矫正和近视眼手术最受欢迎。医美人群对拍摄美化类、视频服务类和电商类APP有特定偏好。未来,医美市场潜力巨大,轻医美将成为主流,尤其是注射类和能量源类项目,预计未来五年复合增长率达20%-30%。

2025-04-17

### 美妆行业基于新浪新闻平台的品牌营销策略分析与实践案例解读

该白皮书由克劳锐出品,深入剖析了中国大陆美妆行业的发展现状与未来趋势,涵盖市场规模、用户消费行为、营销痛点及趋势。报告指出,2020-2025年美妆市场规模将持续增长,预计未来三年加速发展,但人均消费额仍低于全球TOP5国家,存在较大增长空间。品牌营销面临用户心智教育难度加大、品牌力建设不足等问题。营销趋势方面,广告主重视品牌价值,节点营销、多平台组合投放成为主流。新浪新闻凭借其优质的用户基础、协同互补的生态体系以及多样化的营销模式,助力美妆品牌实现品牌形象、产品价值和品牌口碑的三重破圈提升。

2025-04-15

### 抖音美妆成分榜:2023年3月美妆成分市场趋势与分析

该报告由巨量算数与算数电商研究院联合发布,聚焦2023年3月抖音平台上美妆成分的相关数据。报告展示了美妆成分在抖音上的播放量、搜索点击、兴趣用户人数等关键指标的增长趋势,指出3月份播放量超过40亿,用户兴趣显著提升。报告还详细分析了不同品类和功效下的成分表现,如面膜、面部精华、化妆水等,其中补水保湿和抗老抗氧功效备受关注。此外,报告列举了综合热度、内容热度、搜索热度、营销力度和潜力指数等五个维度的TOP10成分榜单,揭示了玫瑰、玻尿酸、维生素C等成分的热度。报告还特别介绍了几位美妆达人的优秀内容案例,强调了达人对美妆成分传播的重要性。

2025-04-15

【数字图像处理】基于局部方差和结构相似度的图像质量评价方法:通信工程专业课程设计实践与分析了一个数字图像处理

内容概要:本课程设计旨在通过复现一种基于局部方差和结构相似度(SSIM)的图像质量评价方法,深入理解数字图像处理的核心原理和技术。课程设计包括理论分析、算法实现和实验验证三个主要部分。首先,通过对国内外研究现状的分析,指出了传统图像质量评价方法(如PSNR)存在的问题,提出了结合SSIM和局部方差(LVS)的新方法,以更好地反映人眼视觉特性。接着,详细介绍了SSIM和LVS的计算原理,包括亮度、对比度、结构比较及局部方差分布的相似度计算。最后,通过Matlab实现了MSSIM、WSSIM、LVS等算法,并在TID2013图像库上进行了实验验证,结果显示该方法在PLCC、SRCC和RMSE等指标上表现优异,评价结果更贴近人眼的主观感受。 适合人群:具备一定编程基础,尤其是对Matlab有一定了解的学生或研究人员,尤其适合对数字图像处理、图像质量评价感兴趣的通信工程、电子信息等相关专业的本科生或研究生。 使用场景及目标:①帮助学生掌握数字图像处理的基本理论和技术,特别是图像质量评价方法;②通过实际编程实现和实验验证,增强学生解决实际问题的能力;③培养学生对图像处理算法的分析、设计和优化能力,提升其工程实践水平。 其他说明:本课程设计不仅涵盖了理论知识的学习,还包括了详细的算法实现步骤和实验结果分析。学生在学习过程中应注重理论与实践相结合,通过调试和改进代码,深入理解SSIM和LVS算法的优缺点及其应用场景。此外,该设计还鼓励学生探索更多改进的可能性,以进一步提高图像质量评价的准确性。

2025-06-08

【MATLAB应用数学】基于MATLAB的数学建模与仿真:求解物理、生物及农业领域复杂问题的设计与分析

内容概要:本文档涵盖了MATLAB和SPSS在解决实际问题中的应用。MATLAB部分包括数学建模与程序设计,具体涉及几何形状的质量计算、蒲公英种子传播的模拟、智能温室作物种植优化、动物饲料配方优化以及肿瘤生长模型的建立与拟合。SPSS部分则聚焦于农业统计分析,包括小麦播种方式的产量差异显著性检验、水稻品种和播种期对出苗至抽穗天数的影响分析,以及累积温和三化螟蛾盛发期之间的回归关系研究。 适合人群:具有数学、编程基础,从事农业科学、生物医学研究或数据分析的专业人士。 使用场景及目标:①学习MATLAB在物理、生物学和农业优化问题中的应用,掌握数学建模和编程技巧;②掌握SPSS在农业统计分析中的应用,包括假设检验、方差分析和回归分析,用于指导农业生产决策。 阅读建议:读者应具备一定的数学和编程基础,尤其对MATLAB和SPSS有一定了解。建议结合实际案例,边学边练,加深理解。同时,在学习过程中,注重理论与实践相结合,确保能够独立完成类似的项目任务。

2025-06-08

学号-姓名-《航天器姿态动力学与控制》课程仿真实验计算大作业模板.doc

航天器姿态动力学与控制

2025-06-08

6.png

6

2025-04-18

1.png

1

2025-04-18

4.png

4

2025-04-18

5.png

5

2025-04-18

3.png

3

2025-04-18

2.png

2

2025-04-18

6e61ae106bb49d5bd432b38c0430f4fe_241b393e3ed30f2dbd1ca35cbd7aa07d.png

6e61ae106bb49d5bd432b38c0430f4fe_241b393e3ed30f2dbd1ca35cbd7aa07d

2025-04-18

9534c841beb04fa36d24a5a14eec92b0_aa9bcdbed2f33d95a616c9b54f8b8aec.png

9534c841beb04fa36d24a5a14eec92b0_aa9bcdbed2f33d95a616c9b54f8b8aec

2025-04-18

1.png

1

2025-04-18

69586e9e483b51958e0a16b48d98d5f5_1b074b731ec47fd72818eab27d7d2747.png

69586e9e483b51958e0a16b48d98d5f5_1b074b731ec47fd72818eab27d7d2747

2025-04-18

424f70a533eeabde933fe91226b4e7bc_e8005c98457ea25bb6c155380f1b99f0.png

424f70a533eeabde933fe91226b4e7bc_e8005c98457ea25bb6c155380f1b99f0

2025-04-18

9f148310e17f2960fea3ff60af384a37_098bb292f553b9f4ff9c67367379fafd.png

9f148310e17f2960fea3ff60af384a37_098bb292f553b9f4ff9c67367379fafd

2025-04-18

2.jpg

2

2025-04-18

3.jpg

3

2025-04-18

1.jpg

1

2025-04-18

95dad649280e96c6b6ff75a084f73301_O1CN01gCIP6s1Vqw8g7p0FC_!!0-fleamarket.jpg

95dad649280e96c6b6ff75a084f73301_O1CN01gCIP6s1Vqw8g7p0FC_!!0-fleamarket

2025-04-18

b99cc2c04a67cc010a8e3150e118c16a_816a1d8ad3ae3ce56dc5892049eed776.png

b99cc2c04a67cc010a8e3150e118c16a_816a1d8ad3ae3ce56dc5892049eed776

2025-04-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除