显微镜镜头缺陷检测,缺陷检测,机械,玻璃等缺陷检测--gabor和分割法

本文介绍了显微镜镜头、机械和玻璃等缺陷检测的图像处理方法,重点探讨了采用Gabor滤波和分割技术进行缺陷检测。讨论了阈值化分割,包括全局阈值法(如OTSU)、局部阈值法(如Niblack算法)在图像分割中的应用,并通过实验比较了它们的效果,以确定最佳的缺陷检测策略。
摘要由CSDN通过智能技术生成

各个视角的

采取了分割的方法 可以检测部分内容

阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。为了能够更好的提取出表面缺陷,恰当的阈值分割算法至关重要,阈值分割常用的方式有全局阈值法,局部阈值法和多阈值分割法。考虑到我们要提取缺陷,我们只考虑单阈值分割算法[8]。且我们的算法能争对不同图像有不同的阈值,所以我们只能使用动态变阈值算法。我们考虑全局阈值分割中的最大类间方差法(OTSU)和最大熵法,对于局部阈值分割,我们考虑Niblack算法。用缺陷图像实际测试三者的效果并比较,选择效果最好的一种。 

显微镜镜头缺陷检测,缺陷检测,机械,玻璃等缺陷检测--gabor和分割法-机器学习文档类资源-CSDN文库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab_python22

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值