进行对抗网络图像的识别

这篇博客介绍了一种使用ResNet模型进行对抗性图像识别的方法,通过训练得到的模型在测试集上的准确率达到了80%以上。文章详细展示了ResNet18和34的BasicBlock以及ResNet50,101,152的Bottleneck结构,并给出了相应的代码实现。" 104153991,9278730,区块链中的哈希算法解析,"['区块链', '哈希', '加密技术']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

采集的原始图像的形式如下

得到了loss函数的曲线

可以看出来 咱们能得到原始的图形 他们都是采取了一些加入噪声 抵御干扰的形式等

 

这是每一个batch下的曲线数据

所以他有一定的震荡

 

acc的曲线图

一样的 有一定的震荡 可以看出  趋势叶在80%以上

测试机的loss函数数据图

 Finished Training,valacc= 0.808

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab_python22

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值