1/Unknown - 59s 59s/step - loss: 1055.8333 - loss_array: 1055.4790 - mse: 1055.9851Shape of x before patch_embed: [50 5761]
2/Unknown - 60s 559ms/step - loss: 1163.2756 - loss_array: 1163.3583 - mse: 1163.2401Shape of x before patch_embed: [50 5761]
3/Unknown - 60s 531ms/step - loss: 1209.6768 - loss_array: 1211.8483 - mse: 1208.7461Shape of x before patch_embed: [50 5761]
4/Unknown - 61s 515ms/step - loss: 1237.2795 - loss_array: 1242.0624 - mse: 1235.2297Shape of x before patch_embed: [50 5761]
5/Unknown - 61s 508ms/step - loss: 1234.6672 - loss_array: 1242.5141 - mse: 1231.3042Shape of x before patch_embed: [50 5761]
6/Unknown - 62s 504ms/step - loss: 1228.4303 - loss_array: 1239.4085 - mse: 1223.7252Shape of x before patch_embed: [50 5761]
7/Unknown - 62s 501ms/step - loss: 1256.0232 - loss_array: 1271.7646 - mse: 1249.2767Shape of x before patch_embed: [50 5761]
8/Unknown - 63s 499ms/step - loss: 1280.5443 - loss_array: 1301.5618 - mse: 1271.5366Shape of x before patch_embed: [50 5761]
9/Unknown - 63s 496ms/step - loss: 1244.5045 - loss_array: 1269.5423 - mse: 1233.7739Shape of x before patch_embed: [50 5761]
10/Unknown - 64s 496ms/step - loss: 1269.7253 - loss_array: 1300.3098 - mse: 1256.6178Shape of x before patch_embed: [50 5761]
11/Unknown - 64s 497ms/step - loss: 1267.3302 - loss_array: 1303.8362 - mse: 1251.6846Shape of x before patch_embed: [50 5761]
12/Unknown - 65s 496ms/step - loss: 1261.7344 - loss_array: 1303.3875 - mse: 1243.8829Shape of x before patch_embed: [50 5761]
13/Unknown - 65s 496ms/step - loss: 1252.1316 - loss_array: 1300.0152 - mse: 1231.6099Shape of x before patch_embed: [50 5761]
14/Unknown - 66s 495ms/step - loss: 1235.3027 - loss_array: 1288.9775 - mse: 1212.2992Shape of x before patch_embed: [50 5761]
15/Unknown - 66s 495ms/step - loss: 1217.7271 - loss_array: 1277.5720 - mse: 1192.0793Shape of x before patch_embed: [50 5761]
16/Unknown - 67s 494ms/step - loss: 1204.9285 - loss_array: 1270.5418 - mse: 1176.8085Shape of x before patch_embed: [50 5761]
17/Unknown - 67s 493ms/step - loss: 1195.4688 - loss_array: 1268.1421 - mse: 1164.3231Shape of x before patch_embed: [50 5761]
18/Unknown - 68s 492ms/step - loss: 1191.5787 - loss_array: 1271.7016 - mse: 1157.2404Shape of x before patch_embed: [50 5761]
19/Unknown - 68s 492ms/step - loss: 1182.6924 - loss_array: 1270.5971 - mse: 1145.0192Shape of x before patch_embed: [50 5761]
20/Unknown - 69s 492ms/step - loss: 1169.4586 - loss_array: 1264.4754 - mse: 1128.7369Shape of x before patch_embed: [50 5761]
21/Unknown - 69s 492ms/step - loss: 1160.1130 - loss_array: 1263.2279 - mse: 1115.9209Shape of x before patch_embed: [50 5761]
22/Unknown - 70s 492ms/step - loss: 1147.8940 - loss_array: 1258.5165 - mse: 1100.4843Shape of x before patch_embed: [50 5761]
23/Unknown - 70s 492ms/step - loss: 1135.8645 - loss_array: 1253.9013 - mse: 1085.2773Shape of x before patch_embed: [50 5761]
24/Unknown - 71s 492ms/step - loss: 1125.5957 - loss_array: 1251.3021 - mse: 1071.7214Shape of x before patch_embed: [50 5761]
25/Unknown - 71s 493ms/step - loss: 1124.3586 - loss_array: 1258.7793 - mse: 1066.7496Shape of x before patch_embed: [50 5761]
26/Unknown - 72s 492ms/step - loss: 1115.1522 - loss_array: 1257.2809 - mse: 1054.2399Shape of x before patch_embed: [50 5761]
27/Unknown - 72s 492ms/step - loss: 1099.5878 - loss_array: 1248.1189 - mse: 1035.9316Shape of x before patch_embed: [50 5761]
28/Unknown - 73s 492ms/step - loss: 1106.5978 - loss_array: 1264.7415 - mse: 1038.8218Shape of x before patch_embed: [50 5761]
29/Unknown - 73s 492ms/step - loss: 1099.6489 - loss_array: 1266.0244 - mse: 1028.3451Shape of x before patch_embed: [50 5761]
30/Unknown - 74s 492ms/step - loss: 1086.5773 - loss_array: 1259.5500 - mse: 1012.4459Shape of x before patch_embed: [50 5761]
31/Unknown - 74s 491ms/step - loss: 1074.7220 - loss_array: 1254.7452 - mse: 997.5690 Shape of x before patch_embed: [50 5761]
32/Unknown - 75s 491ms/step - loss: 1074.7183 - loss_array: 1262.9311 - mse: 994.0555Shape of x before patch_embed: [50 5761]
33/Unknown - 75s 491ms/step - loss: 1070.3453 - loss_array: 1266.4588 - mse: 986.2966Shape of x before patch_embed: [50 5761]
34/Unknown - 75s 490ms/step - loss: 1059.4283 - loss_array: 1261.8170 - mse: 972.6904Shape of x before patch_embed: [50 5761]
35/Unknown - 76s 490ms/step - loss: 1053.1051 - loss_array: 1263.5522 - mse: 962.9136Shape of x before patch_embed: [50 5761]
36/Unknown - 76s 490ms/step - loss: 1055.0686 - loss_array: 1273.9264 - mse: 961.2723Shape of x before patch_embed: [50 5761]
37/Unknown - 77s 490ms/step - loss: 1047.8059 - loss_array: 1273.6761 - mse: 951.0045Shape of x before patch_embed: [50 5761]
38/Unknown - 77s 490ms/step - loss: 1038.2676 - loss_array: 1270.1917 - mse: 938.8716Shape of x before patch_embed: [50 5761]
39/Unknown - 78s 490ms/step - loss: 1030.4537 - loss_array: 1269.4447 - mse: 928.0291Shape of x before patch_embed: [50 5761]
40/Unknown - 78s 490ms/step - loss: 1022.5446 - loss_array: 1268.2746 - mse: 917.2316Shape of x before patch_embed: [50 5761]
41/Unknown - 79s 490ms/step - loss: 1013.1972 - loss_array: 1264.7225 - mse: 905.4007Shape of x before patch_embed: [50 5761]
42/Unknown - 79s 490ms/step - loss: 1005.6382 - loss_array: 1263.4517 - mse: 895.1467Shape of x before patch_embed: [50 5761]
43/Unknown - 80s 490ms/step - loss: 1005.3717 - loss_array: 1270.0076 - mse: 891.9564Shape of x before patch_embed: [50 5761]
44/Unknown - 80s 489ms/step - loss: 994.2159 - loss_array: 1262.7508 - mse: 879.1295 Shape of x before patch_embed: [50 5761]
45/Unknown - 81s 490ms/step - loss: 987.3069 - loss_array: 1262.7047 - mse: 869.2793Shape of x before patch_embed: [50 5761]
46/Unknown - 81s 490ms/step - loss: 978.3075 - loss_array: 1258.8486 - mse: 858.0755Shape of x before patch_embed: [50 5761]
47/Unknown - 82s 489ms/step - loss: 970.7357 - loss_array: 1256.9682 - mse: 848.0646Shape of x before patch_embed: [50 5761]
48/Unknown - 82s 489ms/step - loss: 965.9424 - loss_array: 1256.6690 - mse: 841.3453Shape of x before patch_embed: [50 5761]
49/Unknown - 83s 489ms/step - loss: 963.5757 - loss_array: 1260.1774 - mse: 836.4607Shape of x before patch_embed: [50 5761]
50/Unknown - 83s 489ms/step - loss: 956.5359 - loss_array: 1257.9643 - mse: 827.3522Shape of x before patch_embed: [50 5761]
51/Unknown - 84s 489ms/step - loss: 950.8594 - loss_array: 1257.9376 - mse: 819.2544Shape of x before patch_embed: [50 5761]
52/Unknown - 84s 490ms/step - loss: 943.8573 - loss_array: 1255.5366 - mse: 810.2803Shape of x before patch_embed: [50 5761]
53/Unknown - 85s 489ms/step - loss: 937.1182 - loss_array: 1253.3471 - mse: 801.5916Shape of x before patch_embed: [50 5761]
54/Unknown - 85s 489ms/step - loss: 930.8763 - loss_array: 1251.7773 - mse: 793.3473Shape of x before patch_embed: [50 5761]
55/Unknown - 86s 489ms/step - loss: 927.3854 - loss_array: 1253.5832 - mse: 787.5864Shape of x before patch_embed: [50 5761]
56/Unknown - 86s 489ms/step - loss: 921.8481 - loss_array: 1252.9428 - mse: 779.9505Shape of x before patch_embed: [50 0]
tf.debugging.assert_greater_equal(shape_x[1], 1, message=“The second dimension of x is invalid.”)
Node: ‘masked_autoencoder_vi_t/assert_greater_equal/Assert/Assert’
Detected at node ‘masked_autoencoder_vi_t/assert_greater_equal/Assert/Assert’ defined at (most recent call last):
File “/usr/lib/python3.8/threading.py”, line 890, in _bootstrap
self._bootstrap_inner()
File “/usr/lib/python3.8/threading.py”, line 932, in _bootstrap_inner
self.run()
File “/usr/local/lib/python3.8/dist-packages/keras/src/engine/training.py”, line 1303, in run_step
outputs = model.train_step(data)
File “/JPCM_server/1.JPCM/3.public/xialijian/model_pipeline_hydraulic/mae_model_wrapper_v8_new.py”, line 268, i n train_step
y_pred, y_pred_array, mask = self(data, training=True)
File “/usr/local/lib/python3.8/dist-packages/keras/src/utils/traceback_utils.py”, line 65, in error_handler
return fn(*args, **kwargs)
File “/usr/local/lib/python3.8/dist-packages/keras/src/engine/training.py”, line 569, in call
return super().call(*args, **kwargs)
File “/usr/local/lib/python3.8/dist-packages/keras/src/utils/traceback_utils.py”, line 65, in error_handler
return fn(*args, **kwargs)
File “/usr/local/lib/python3.8/dist-packages/keras/src/engine/base_layer.py”, line 1150, in call
outputs = call_fn(inputs, *args, **kwargs)
File “/usr/local/lib/python3.8/dist-packages/keras/src/utils/traceback_utils.py”, line 96, in error_handler
return fn(*args, **kwargs)
File “/JPCM_server/1.JPCM/3.public/xialijian/model_pipeline_hydraulic/mae_model_wrapper_v8_new.py”, line 248, i n call
latent, mask, ids_restore = self.forward_encoder(imgs)
File “/JPCM_server/1.JPCM/3.public/xialijian/model_pipeline_hydraulic/mae_model_wrapper_v8_new.py”, line 147, i n forward_encoder
tf.debugging.assert_greater_equal(shape_x[1], 1, message=“The second dimension of x is invalid.”)
Node: ‘masked_autoencoder_vi_t/assert_greater_equal/Assert/Assert’
2 root error(s) found.
(0) INVALID_ARGUMENT: assertion failed: [The second dimension of x is invalid.] [Condition x >= y did not hold e lement-wise:] [x (masked_autoencoder_vi_t/strided_slice:0) = ] [0] [y (masked_autoencoder_vi_t/assert_greater_equal /y:0) = ] [1]
[[{{node masked_autoencoder_vi_t/assert_greater_equal/Assert/Assert}}]]
[[Reshape_382/_308]]
(1) INVALID_ARGUMENT: assertion failed: [The second dimension of x is invalid.] [Condition x >= y did not hold e lement-wise:] [x (masked_autoencoder_vi_t/strided_slice:0) = ] [0] [y (masked_autoencoder_vi_t/assert_greater_equal /y:0) = ] [1]
[[{{node masked_autoencoder_vi_t/assert_greater_equal/Assert/Assert}}]]
0 successful operations.
0 derived errors ignored. [Op:__inference_train_function_61690]
主要报错是这个,多方查找资料后仍没解决问题。
1万+





