有时候当我们在服务器上运行pytorch代码时,会出现这样的问题:
很多解决方法都说是cuda和pytorch版本不对,但其实就算去改变版本可能最后还是会出现这个问题。当然也有loss传播的问题,这个问题报错会专门指出问题的所在。出现这个问题有较大的原因是因为GPU的算力不足,尤其是学校的服务器,大家都在用,因此剩余空间很少,无法满足代码要求。此时可以更换到GPU空间剩余较多的卡上,就能解决问题了。(本人亲身经历)
有时候当我们在服务器上运行pytorch代码时,会出现这样的问题:
很多解决方法都说是cuda和pytorch版本不对,但其实就算去改变版本可能最后还是会出现这个问题。当然也有loss传播的问题,这个问题报错会专门指出问题的所在。出现这个问题有较大的原因是因为GPU的算力不足,尤其是学校的服务器,大家都在用,因此剩余空间很少,无法满足代码要求。此时可以更换到GPU空间剩余较多的卡上,就能解决问题了。(本人亲身经历)