自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Matrix-11

Mens et Manus

  • 博客(308)
  • 资源 (36)
  • 论坛 (3)
  • 问答 (1)
  • 收藏
  • 关注

原创 计算摄影资源汇总
原力计划

计算摄影资源汇总计算摄影是一个交叉学科,融合了图像处理,光学,信号处理,计算机视觉,计算机图形学,优化,机器学习等各个领域,计算摄影最早在国外的大学里只是一个比较小众的研究方向,比如早期斯坦福大学的光场,相机阵列,以及杜克大学的多光谱成像等,基本还是停留在学术研究阶段,而且比起计算机领域的识别,检测,分割,跟踪等方向来说,计算摄影这块算是比较低调的一个研究方向。这些年,随着智能手机拍照的兴起,计算摄影也获得了越来越多的关注,因为以前的单反相机,尺寸比较大,所以长焦比拼的都是镜头模组的设计,sensor

2020-07-12 10:50:52 1151

原创 机器学习笔记

博客专栏:机器学习PDF 文档下载地址:Machine Learning 学习笔记机器学习 scikit-learn 图谱人脸表情识别常用的几个数据库机器学习 F1-Score, recall, precision机器学习 DeepDreaming with TensorFlow (三)机器学习 DeepDreaming with TensorFlow (二)机器学习 DeepDre...

2015-02-05 19:01:01 3805

原创 图像特效及滤镜算法汇总

OpenCV 版:OpenCV 图像处理图层混合算法:PS图层混合算法之一(不透明度,正片叠底,颜色加深,颜色减淡)PS图层混合算法之二(线性加深,线性减淡,变亮,变暗)PS图层混合算法之三(滤色, 叠加, 柔光, 强光)PS图层混合算法之四(亮光, 点光, 线性光, 实色混合)PS图层混合算法之五(饱和度,色相,颜色,亮度)PS图层混合算法之六(差值,溶解, 排除)图像调整算法...

2015-01-15 17:41:34 13363 3

原创 机器学习:神经网络中的激活函数

随着深度学习的兴起,神经网络也似乎成了所有计算机视觉任务的标配,大家除了研究各种各样的网络结构之外,还有研究优化方法的,以及激活函数的,这篇博客就对当前各种各样的激活函数做一个总结,分析其背后的性质。到目前为止,激活函数的形式有很多种了,早期的激活函数主要是 sigmoid 以及 tanh 函数,这两种函数都能将输入限制在很小的范围内,算是一种非线性函数,后来又出现了 RELU 以及各种基于 RELU 的变体。Tanh 函数tanh 是一种双曲函数,称为双曲正切,其表达式如下:tanh(x)=ex−

2020-10-19 22:11:55 125

原创 论文解读:Improving Color Reproduction Accuracy on Cameras

论文解读:Improving Color Reproduction Accuracy on Cameras今天介绍一篇有关颜色准确性的文章,颜色的准确性是个有点玄妙的问题,因为人眼独特的颜色感知机制,导致人眼对不同光照下的物体有一种常恒性,简单来说,就是红色的苹果,在不同光照下,对人眼来说都是一样的红色,但是对相机来说不是这样的,相机反映的是真实的光谱性质,为了配合人眼的这种感知特性,就需要对颜色做一些校正或者变换,使得颜色在人眼看来是准确的,这个准确,不一定反映了场景的客观真实。颜色导论在介绍这篇文

2020-09-06 23:00:04 255

原创 论文讲解:A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising

论文讲解:A Physics-based Noise Formation Model for Extreme Low-light Raw DenoisingIntroduction这是发表在 CVPR 2020 上的一篇文章,依然是介绍如何构造更加真实的噪声数据,以用来处理暗光下的降噪问题,这篇文章比较系统地介绍了 sensor 在成像过程中的噪声是如何产生的,以及如何对噪声分布进行估计和参数的标定。对于了解 ISP 成像中的噪声问题有比较好的借鉴。在 ISP 中,比较关键的两个图像质量一个是噪声,另

2020-08-17 23:26:30 1292

原创 论文解读: Learning to AutoFocus (二)

论文解读: Learning to AutoFocus (二)前面介绍了 Learning to AutoFocus 这篇文章,这篇文章主要是基于深度学习的方式来实现自动对焦算法的,不过这篇文章的补充材料里面,也介绍了很多传统算法的自动对焦算法,总得来说,是基于反差的对焦技术和基于相位检测的对焦技术。Contrast-Based Baseline Algorithms基于反差的对焦算法,就是给定一组 nnn 张不同对焦距离下的图,Ik,k∈{1,2,...n}I_k, k \in \{ 1,2,...

2020-07-27 23:36:07 481

原创 论文解读: Learning to AutoFocus
原力计划

论文解读: Learning to AutoFocus今天介绍谷歌计算摄影团队的一篇新文章,Learning to AutoFocus,发表在 CVPR 2020 上。在摄影中,自动对焦是一个非常重要的环节,相信绝大多数的用户,对于 AF 的要求都是又快又准,相机由于镜头的特性,一般来说只能在一定范围内成像清晰,这个范围叫做景深,为了能让自己关注的区域成像清晰,都需要用到对焦技术,这篇文章也是用上了深度学习的方法来实现的,可以看到,深度学习已经在 low-level 的图像处理中发挥着越来越重要的作用了

2020-07-20 23:22:39 600 1

原创 论文解读:Cycle ISP Real Image Restoration via Improved Data Synthesis
原力计划

Cycle ISP: Real Image Restoration via Improved Data Synthesis谷歌去年发表了一篇文章:Unprocessing Images for Learned Raw Denoising,是关于如何构造逼近真实的数据来进行降噪的,在去年的文章里,研究者们主要是模拟了 ISP 中从 RAW 图到 sRGB 的过程,然后将 ISP 的过程逆转过来,从 sRGB 到 RAW,然后再在 RAW 域上添加噪声,从而构造出符合真实场景的噪声数据。今年谷歌又发表了一篇

2020-07-05 21:45:15 1277

原创 论文解读:Unprocessing Images for Learned Raw Denoising
原力计划

Unprocessing Images for Learned Raw Denoising今天介绍谷歌发表在 2019 CVPR 上的一篇文章,Unprocessing Images for Learned Raw Denoising,这篇文章主要为了解决数据构造的问题,简单来说,就是将 ISP 的流程逆过来,从 sRGB 图像变到 RAW 图,然后进行模型训练,从而达到降噪的过程。我们都知道,基于机器学习的图像处理技术,比如降噪,超分等,对数据的分布比较敏感,如果测试数据和训练数据的分布类似,那么效果

2020-06-22 22:06:31 702

原创 论文解读:手机拍照暗光成像

Handheld Mobile Photography in Very Low Light在手机拍照中,暗光拍摄是一个非常有挑战的应用场景,受限于手机的硬件配置,没有单反的大镜头,没有单反的大 sensor,所以相对单反来说,手机的硬件配置显得有点先天不足,但是硬件不足,算法来凑,计算摄影,在手机拍照领域,已经越来越受到重视,谷歌更加是这个方向的领先者,这几年,谷歌的计算摄影团队在 ACM Siggraph 上总是会公开一些自家的计算摄影技术,前几代手机,谷歌还是单镜头的配置,在多镜头已经成为趋势的安卓阵

2020-05-21 22:42:47 1109

原创 计算摄影:噪声模型与噪声估计

噪声模型sensor noise在 camera ISP 流程中,有一个 denoise 的环节,一般在 demosaic 后面,噪声一般是 sensor 接收光子然后转化成 RAW 图的过程中产生的,环境中的光通过镜头模组照射到 sensor 上,因为光电效应,会激发很多电子,这些电子转成电流被一个模拟放大器放大,然后通过一个 ADC 模数转换,最后输出离散的照度值。图一:ISP 流...

2020-04-26 21:50:37 1981 1

原创 一个有趣的光学图案绘制程序

一个有趣的光学图案绘制程序λ=600nm\lambda = 600 nmλ=600nmα=0.5\alpha = 0.5α=0.5a=5λa = 5 \lambdaa=5λk=2π/λk = 2 \pi / \lambdak=2π/λw0=5λw_0 = 5 \lambdaw0​=5λz0=k⋅w0⋅w0/2z_0 = k \cdot w_0 \cdot w_0 / 2z0​=k⋅...

2020-04-13 22:43:52 348

原创 论文解读: Double DIP

论文解读:Double-DIP” :Unsupervised Image Decomposition via Coupled Deep-Image-PriorsUnsupervised Image Decomposition via Coupled Deep-Image-Priors)之前介绍过一篇非常有意思的论文,deep image prior,论文作者认为,生成网络的结构本身就是一种很...

2020-04-08 21:14:32 2230

原创 计算摄影中的图像恢复

最近几年,有一个研究方向随着手机拍照的崛起而受到了越来越多的关注,也就是 computation photograph,中文翻译过来就叫计算摄影,顾名思义,计算摄影,就是计算+摄影,因为手机受到各种硬件的约束和限制,和单反比,不可能有更大的镜头,更大的 sensor,更灵活的变焦系统,所以为了提升手机摄影的效果,就需要依赖更好的算法,这就是计算摄影的由来,各大厂商,都在硬件的基础上,深挖自己的算法...

2020-03-29 22:11:22 406

原创 光场成像重聚焦

前面介绍了光场成像的基本原理,光场成像是利用微透镜阵列的形式来记录光线的方向,接下来介绍一下光场成像中的重聚焦性质。Focal stack之前介绍摄影的时候,我们介绍了一个景深的概念,景深,简单来说,就是摄影的时候,在拍摄主体前后一定的范围内,都能够对焦清楚,而在这个范围之外,场景都会变得模糊,这个对焦清晰的范围,就称之为景深。所以一般来说,我们摄影的时候,拍摄到的图像只会有一段是比较清楚的...

2020-03-11 19:28:53 929

原创 光场成像简介

引言创世纪之初,上帝说,要有光,于是,就有了光我们所处的世界,其实就是一个充满光的世界,光线是这个世界最普通,最常见,最神奇的东西,无处不在,却又摸不着,物理学告诉我们,光是一种电磁波,而电磁波有电磁场,所以光,其实也有光场。光场(Light Field)是空间中光线集合的完备表示,采集并显示光场就能在视觉上重现真实世界。全光函数(Plenoptic Function)包含7个维度,是表示光...

2020-03-08 15:28:59 1699

原创 关于增量学习的一点总结思考

增量学习最近几年,学术界开始兴起了一些持续学习,增量学习,终生学习的研究,这个概念本身也是想模仿人的学习过程,人类的学习能力是可以持续的,我们的知识也是一个逐渐积累的过程,但是反观现在的学习模型,从一个任务转移到另外一个任务的时候,新任务上会学习的很好,但是原来的任务就会忘得一干二净,这也是 AI 被人诟病的一个地方,过去是,现在也是,即使有大数据和深度学习加持,依然不能避免这些缺陷。当我们更...

2020-01-15 22:13:21 6544 6

原创 论文解读:Deep Image Prior

Deep Image Prior深度卷积网络在图像生成和图像恢复领域,已经得到了越来越广泛的应用,一般这种网络要想取得很好的效果,需要经过大量的图像样本训练,而 deep image prior 的作者提出了一种新的观点,他们认为,生成网络的结构本身就是一种很好的先验,这种网络结构的先验,不需要经过大量的数据训练,就可以捕获很多 low-level 的图像统计知识,这篇文章的作者因此提出了一种基...

2019-12-24 21:57:38 2387

原创 模型优化的熵与不平衡学习

模型优化的熵与不平衡学习在统计机器学习里,我们经常会遇到一个数据分布不平衡的问题,在我们训练这种数据的时候,往往都会发现分类器会倾向于样本多的那一类,所以说在统计机器学习里,也是会遵循少数服从多数原则的。不平衡学习,是统计机器学习里非常常见的一类问题,而不平衡学习所反映出来的优化模型的倾向,也说明了现在的机器学习,本质上就是一种数据拟合,哪类的数据多,那么模型就会偏向于数据多的那类,不平衡学习...

2019-12-05 22:25:10 464

原创 小样本学习的悖论

小样本学习的悖论引言这两年,学术界开始兴起了一种 “小样本学习” 的技术,小样本学习的本意是想模仿人类的学习过程,研究者认为人类的学习,从来都不是通过大量的数据死记硬背来实现的,机器想要模仿的人类视觉的能力,比如识别能力,似乎是人类与生俱来的能力,可以轻易的区分开不同种类的东西,不管这东西有什么光照,尺度,形状的变化,或者复杂背景的干扰,人类视觉的识别系统,比起机器学习的模型,是在的鲁棒太多。...

2019-11-11 21:33:30 695 1

原创 论文解读:ICCV2019 Best paper SinGAN

SinGAN: Learning a Generative Model from a Single Natural Image今天介绍一篇非常有趣的论文,同时也是 ICCV 2019 的 best paper,题目叫做 SinGAN: Learning a Generative Model from a Single Natural Image,题目非常浅显直白,就是从单张自然图像中学习一个生成...

2019-11-03 17:34:12 2056

原创 机器学习的三大定律

引言人类的本性是好奇,无论何时,总是对未知充满好奇,好奇就会开始去想象,人类的联想与记忆功能是智能发展的基础,没有记忆,就无从想象,没有想象,就无从创造。人类思想的发展史,就是一个不断好奇,不断想象,不断探索的过程。在机械时代,主宰人类知识体系的是因果论,那个时候的科学家,研究的都是自然客观规律,从牛顿三大定律,到相对论,从电学理论,到麦克斯韦方程理论,一切的一切都是确定的。万有引力,你在或...

2019-10-28 21:35:34 3245 1

原创 机器视觉:目标检测

目标检测是计算机视觉领域非常重要的一个应用,是场景理解,多目标识别的前提,

2019-10-21 22:34:22 2157 1

原创 图像处理中的局部运算与滤波

在图像处理中,对图像的滤波是非常常见的一种运算,我们耳熟能详的高斯滤波,双边滤波,导向滤波,

2019-09-25 22:41:52 1922

原创 Hough 变换

Hough 变换是图像处理中,检测直线最基本,也是应用最广泛的一种传统方法。虽然现在是深度学习大行其道的时代,但是很多传统的算法,依然有其参考的价值所在,至少从数学表达上来看,是更加的简洁,有理有据。在介绍 Hough 变换之前,我们先回顾一下中学时代学的一些知识,我们学过直角坐标系,也就是常说的 X-Y 坐标系,我们知道在直角坐标系里,一条直线可以简单的用两个参数来表示 y=kx+by = ...

2019-08-04 11:29:06 393

原创 计算摄影:梯度域的图像处理

学过图像处理的人,对图像梯度的概念应该都不陌生,图像梯度,可以将一个图像值变成一个向量,如下图所示:简单来说,就是对像素值,在 x, y 方向进行求导,从而可以得到图像在 x, y 方向的梯度,梯度域的图像处理,就是利用梯度的性质,对图像梯度进行计算,从而达到某些特定的效果,梯度域的图像处理最有名的就是泊松编辑,此外还有 tone-mapping, 图像拼接,图像融合等等,都可以用这种方法来实...

2019-08-03 22:37:59 1391 2

原创 计算摄影: 高动态范围成像

在摄影中,曝光是非常重要的一个参数,曝光时间过长,最终拍摄的图像会显得泛白,就是我们常说的 “过曝”,曝光时间不足的话,图像会显得比较暗,也就是所说的 “欠曝” ,现在的拍摄,一般都有一个自动曝光的估计,通过测量环境光照的强度,来设置合适的曝光时间,让最终的图像明亮比较合适。在真实的场景中,环境光照有一个很宽泛的范围,sensor 一般很难覆盖整个范围,这就是我们所说的高动态范围场景,拍照的人,...

2019-08-02 21:25:36 915

原创 计算摄影:相机成像流程 —— ISP

我们用单反或者手机拍照的时候,从取景到最终出图,是有一个完整的 pipeline 的,今天我们就大概介绍一下这个 pipeline:如何从环境光到 RAW 图到最后的 JPEG 图。sensor以前的摄影,都是黑白照片,虽然光的色散很早就发现了,可是彩色照相却很晚才有,尤其是数字照相,人们一直没有找到很好的方法来捕捉颜色,直到 Bayer 模式的发明,现在的数字 sensor 都是基于 Ba...

2019-08-01 21:45:54 2231

原创 计算摄影:颜色

我们所处的世界是一个丰富多彩,五颜六色的世界,蓝天白云,红花绿叶,这些都是色彩信息,人眼有感知不同色彩的能力,而人眼所能感受的光线,只是整个自然界存在的电磁波中,非常狭小的一段,如下图所示,大概从 390nm — 700nm 的一个范围,就是这些可见光波,让人类感受到自然界的多姿多彩,计算摄影中,要研究的波段,主要是可见波段的成像。我们所说的颜色,也就藏在这可见波段中。图片来源于 “Under...

2019-07-29 21:58:31 630

原创 计算摄影:导论

现在智能手机,最大的一个卖点之一就是拍照,或者说摄影,我们经常听各大手机厂商说手机的拍摄效果要直逼单反,甚至超越单反,但是我们知道,手机的镜头,sensor 应该都没有单反的好,那么要如何达到非常理想的拍摄效果呢,其实一个关键的核心技术就是计算摄影,相比单反来说,手机更依赖于算法去提升拍摄效果。计算摄影,英文名称叫 computational photography,这在国外是一个相对非常成熟的研...

2019-07-22 21:47:06 3111

原创 机器学习:增量学习论文解读—— large scale incremental learning

最近,增量学习,持续学习,终生学习的概念越来越火,也引起了学术界工业界的极大关注,我们知道,传统的机器学习,就是给定一个训练集,我们在这个训练集上训练出一个模型,然后在测试集上做测试,这样基本就是一个完整的机器学习流程。增量学习,考虑的是模型持续学习的能力,比如,我们在数据集 D1\mathcal{D}_1D1​ 上有一个数据集合:{x,y}\{ \mathbf{x}, y \}{x,y},我们可...

2019-07-08 21:21:21 7031 2

原创 图论基础

最近的图卷积网络(GCN)开始受到越来越多的关注,而图卷积网络是由图神经网络(GNN)发展而来,而 GNN 又是由建立在图论的基础之上。图是一种非常神奇的数据结构,非常直观的表示了结构化数据之间的关系,而且借助线性代数以及矩阵的相关性质,可以将图与矩阵非常完美的结合在一起。...

2019-06-21 20:03:45 532

原创 机器学习:MixMatch 论文解读

最近谷歌出了一篇有关半监督学习的 paper,几乎可以说是到目前为止,半监督学习领域的集大成者了,在常用的数据集上,取得了非常惊人的效果。这篇 paper,基本把之前半监督学习领域,有用的方式方法都尝试了一下,然后组合出了一个更为有效的方法。这篇文章的名称叫做 MixMatch: A Holistic Approach to Semi-Supervised Learning想解决的也是半监督学...

2019-06-01 20:47:49 8030 4

原创 机器学习:弱监督学习简介

在机器学习领域,我们遇见最多的是有监督学习,学习 x 到 y 的一种映射,X 可以看成是特征向量,维度可以从几十到几百,上千,甚至百万,y 可以看成是标签,(x, y) 构成了一个训练样本,有输入,输出。这种形式的学习,都称之为有监督学习。虽然我们都已步入了大数据时代,每时每刻,我们都会产生很多的数据,图像,视频,这些数据就类似我们说的 x,为了构造一个识别模型,我们有足够多的 x,可是我们却缺...

2019-05-29 20:45:03 7421

原创 机器学习:Fine tune 神经网络 Mobilenet V2

# Specify where the model checkpoint is (pretrained weights). model_path = args.model_path assert(os.path.isfile(model_path)) # Restore only the layers up to fc7 (included) ...

2019-05-15 20:18:12 1706 3

原创 机器学习:关于图像分类识别的一些思考

在计算机视觉领域,图像的分类识别,可以说是最基础,最常见的一个问题,从之前的手动特征提取结合传统的分类模型,到如今的深度学习,虽然分类识别领域的各个数据库的识别率在不断被刷新,从常见物体识别,到细粒度物体识别,到人脸识别,似乎各个细分的图像识别领域都在取得不断进步,每次伴随着这些进步,就会有意无意地激起人们对 AI 的遐想和恐慌。不得不说,CV 发展了这么多年,确实在不断地进步,不过冷静下来细想...

2019-04-26 19:31:18 5036

原创 机器学习: 利用 Tensorflow 和预训练模型提取特征-- Mobilenet V2

之前介绍了利用 Mobinet V1 做特征提取,从 Tensorflow 的官网上看, Mobilenet V2 的性能比 V1 要更好,今天介绍用 V2 的预训练模型提取特征的方式,基本和 V1 是一样的,只是有一个地方需要注意一下,就是加载网络结构的时候:with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope(is_traini...

2019-04-04 21:30:33 4270 6

原创 机器学习: 利用 Tensorflow 和预训练模型提取特征-- Mobilenet V1

传统的 CV 问题,一般把特征提取和分类模型的构建训练分成两个步骤,CNN 可以把这两者合在一个网络里,目前很多实验证明,利用大量数据训练过的 CNN 可以用作很好的特征提取器,类似一种特征迁移。今天介绍一下,如何利用 Tensorflow 和 预先训练好的模型,做特征提取,我们可以用 TensorFlow GitHub 官网上的预训练模型来做特征提取:https://github.com/t...

2019-03-24 15:03:52 5190 5

原创 机器学习: 深度学习中的卷积和反卷积

卷积神经网络(CNN)几乎成了目前 CV 领域的主流模型,从最初的常规的 2D 卷积形式发展到现在,研究人员已经提出了各种各样的卷积形式,比如 3D 卷积,depth-wise 卷积, point-wise 卷积,扩张(Atrous)卷积,deconvolution 等等,这些卷积在 CNN 模型中,发挥着不同的作用。 今天,我们将介绍 CNN 中,各种不同的卷积形式。...

2019-03-03 11:25:43 976

FER 2013 数据库 压缩分卷二

FER 2013 数据集 压缩分卷 二

2017-06-25

FER 2013 数据库 压缩分卷一

这是 FER 2013 数据库,由于原文件超过了上传限制,所以分卷压缩,这是分卷一。

2017-06-25

机器学习 第四讲 Logistic Regression和广义线性模型

这一讲主要介绍 Logistic regression的推导和广义线性模型,以及从广义线性模型推导出其他的很多概率分布。

2015-02-07

算法导论-英文版

算法导论,学数据结构和算法不能错过的经典之作。

2011-09-27

机器学习 第三讲:从矩阵和概率的角度推导最小均方误差函数

机器学习的讲义,主要介绍利用矩阵和最大似然估计推导最小均方误差函数。

2015-02-04

机器学习 第一讲:线性回归

这是机器学习的讲义,主要介绍了线性回归的定义和相关的推导。

2015-02-04

机器学习 第六讲:Generative Learning Algorithm B

这一讲主要介绍 Generative Learning Algorithm 中的另外一种模型 Naive Bayes, 以及相应的扩展。

2015-03-06

OPENGL红宝书(大家可以看看)

OPENGL红宝书,不是PDF格式,而是网页格式,不过还是很清楚,很有条理,一章章都分好了。

2011-09-02

机器学习 第十二讲:Regularization and model selection

介绍机器学习中的特征选择的一些方法,以及评估学习模型的方法。

2015-03-28

机器学习 第八讲: Support Vector Machines 2

这一讲主要介绍SVM,介绍优化的边界分类器以及Lagrange duality的概念

2015-03-15

机器学习 第七讲:Support Vector Machines 1

这一讲主要介绍SVM的基本概念,介绍margin,函数margin和几何margin的概念。

2015-03-15

机器学习 第十四讲:GMM与EM算法

这讲主要介绍unsupervised学习模型中的高斯混合模型以及EM算法。

2015-04-25

Bayes Theory and Machine Learning 2

利用贝叶斯估计做二分类。介绍贝叶斯决策的基本概念

2016-02-24

Convolutional Neural Networks for Visual Recognition 6

介绍 Convolutional Neural Networks 在计算机视觉的应用的系列讲义的第六讲。

2015-07-16

机器学习 第十三讲: K-均值算法

主要介绍unsupervised学习模型中的K-均值算法。

2015-04-25

Convolutional Neural Networks for Visual Recognition 3

介绍 Convolutional Neural Networks 在计算机视觉的应用的系列讲义的第三讲。

2015-06-28

机器学习 Hidden Markov Models 2

主要介绍 Hidden Markov Models 中的几种常见模型,以及forward 算法。

2015-05-21

Convolutional Neural Networks for Visual Recognition 8

介绍 Convolutional Neural Networks 在计算机视觉的应用的系列讲义的第八讲。

2015-07-16

Image Processing, Analysis, and Machine Vision

这是图像处理领域很经典的一本教材,我目前能找到的最清晰的原版了。

2015-04-17

Convolutional Neural Networks for Visual Recognition 7

介绍 Convolutional Neural Networks 在计算机视觉的应用的系列讲义的第七讲。

2015-07-16

机器学习 第十一讲 Learning Theory

主要介绍机器学习中,学习模型在训练集上遇到的欠拟合及过拟合问题。

2015-03-28

机器学习 第十讲:Support Vector Machines 4

这一讲介绍SVM中引入Regularization处理数据非线性可分的情况,以及SMO算法。

2015-03-15

机器学习 第二讲:矩阵的基本运算

机器学习的讲义,这一讲主要介绍矩阵的基本运算,矩阵的基本概念和矩阵的求导。

2015-02-04

机器学习 第九讲:Support Vector Machines 3

主要介绍SVM中的优化边界分类器以及kernel的概念。

2015-03-15

Numerical.Recipes.3rd.Edition

数值分析的经典教程,英文版的,喜欢看原版的同学不容错过。

2011-09-27

机器学习 第五讲: Generative Learning Algorithm A

这一讲介绍 Generative Learning Algorithm, 主要介绍 Gaussian discriminant analysis。

2015-03-06

机器学习 第十五讲:PCA

这讲主要介绍PCA,主分量分析,一种用于降维的算法。

2015-04-25

机器学习 Hidden Markov Models 1

这个主要介绍机器学习里的一个非常有名的模型,Hidden Markov Models,第一讲主要介绍几本概念。

2015-05-21

机器学习 Hidden Markov Models 3

主要介绍 Hidden Markov Models 的 VITERBI ALGORITHM

2015-05-21

Convolutional Neural Networks for Visual Recognition 1

介绍 Convolutional Neural Networks 在计算机视觉的应用的系列讲义的第一讲。

2015-06-28

Convolutional Neural Networks for Visual Recognition 4

介绍 Convolutional Neural Networks 在计算机视觉的应用的系列讲义的第四讲。

2015-06-28

Convolutional Neural Networks for Visual Recognition 2

介绍 Convolutional Neural Networks 在计算机视觉的应用的系列讲义的第二讲。

2015-06-28

Convolutional Neural Networks for Visual Recognition 5

介绍 Convolutional Neural Networks 在计算机视觉的应用的系列讲义的第五讲。

2015-07-16

Bayes Theory and Machine Learning 1

介绍概率的基本概念,以及基本的贝叶斯准则。

2016-02-24

常用算法程序集(C语言描述)

算法包括: 多项式运算,复数计算,随机数产生,矩阵运算,矩阵特征值和特征向量运算,线性代数方程组求解,非线性代数方程组求解,插值,数值积分,数值微分,排序,查找。

2011-09-01

C++_Primer_Plus_(5th_Edition)

这本书据说比C++_primer_plus 要简单,是比较适合入门的书。

2012-04-02

Matrix_11的留言板

发表于 2020-01-02 最后回复 2020-01-02

关于图像的读取与存储问题

发表于 2012-03-17 最后回复 2012-03-18

用dev c++编译时出错,请求指导。

发表于 2011-09-01 最后回复 2011-09-02

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除