自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Matrix-11

Mens et Manus

原创 Machine Learning 学习笔记

博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱人脸表情识别常用的几个数据库机器学习 F1-Score, recall, precision机器学习 DeepDreaming with TensorFlow (三)机...

2015-02-05 19:01:01 3514 0

原创 图像特效及滤镜算法汇总

OpenCV 版:OpenCV 图像处理 图层混合算法: PS图层混合算法之一(不透明度,正片叠底,颜色加深,颜色减淡)PS图层混合算法之二(线性加深,线性减淡,变亮,变暗)PS图层混合算法之三(滤色, 叠加, 柔光, 强光)PS图层混合算法之四(亮光, 点光, 线性光, 实色混合)PS图...

2015-01-15 17:41:34 10983 2

原创 论文解读:Cycle ISP Real Image Restoration via Improved Data Synthesis
原力计划

Cycle ISP: Real Image Restoration via Improved Data Synthesis 谷歌去年发表了一篇文章:Unprocessing Images for Learned Raw Denoising,是关于如何构造逼近真实的数据来进行降噪的,在去年的文章里,...

2020-07-05 21:45:15 36 0

原创 论文解读:Unprocessing Images for Learned Raw Denoising
原力计划

Unprocessing Images for Learned Raw Denoising 今天介绍谷歌发表在 2019 CVPR 上的一篇文章,Unprocessing Images for Learned Raw Denoising,这篇文章主要为了解决数据构造的问题,简单来说,就是将 ISP...

2020-06-22 22:06:31 80 0

原创 论文解读:手机拍照暗光成像
原力计划

Handheld Mobile Photography in Very Low Light 在手机拍照中,暗光拍摄是一个非常有挑战的应用场景,受限于手机的硬件配置,没有单反的大镜头,没有单反的大 sensor,所以相对单反来说,手机的硬件配置显得有点先天不足,但是硬件不足,算法来凑,计算摄影,在手...

2020-05-21 22:42:47 148 0

原创 计算摄影:噪声模型与噪声估计
原力计划

噪声模型 sensor noise 在 camera ISP 流程中,有一个 denoise 的环节,一般在 demosaic 后面,噪声一般是 sensor 接收光子然后转化成 RAW 图的过程中产生的,环境中的光通过镜头模组照射到 sensor 上,因为光电效应,会激发很多电子,这些电子转成...

2020-04-26 21:50:37 324 1

原创 一个有趣的光学图案绘制程序

一个有趣的光学图案绘制程序 λ=600nm\lambda = 600 nmλ=600nm α=0.5\alpha = 0.5α=0.5 a=5λa = 5 \lambdaa=5λ k=2π/λk = 2 \pi / \lambdak=2π/λ w0=5λw_0 = 5 \lambdaw0​=5...

2020-04-13 22:43:52 135 0

原创 论文解读: Double DIP

论文解读:Double-DIP” : Unsupervised Image Decomposition via Coupled Deep-Image-Priors Unsupervised Image Decomposition via Coupled Deep-Image-Priors) 之前介...

2020-04-08 21:14:32 382 0

原创 计算摄影中的图像恢复

最近几年,有一个研究方向随着手机拍照的崛起而受到了越来越多的关注,也就是 computation photograph,中文翻译过来就叫计算摄影,顾名思义,计算摄影,就是计算+摄影,因为手机受到各种硬件的约束和限制,和单反比,不可能有更大的镜头,更大的 sensor,更灵活的变焦系统,所以为了提升...

2020-03-29 22:11:22 217 0

原创 光场成像重聚焦

前面介绍了光场成像的基本原理,光场成像是利用微透镜阵列的形式来记录光线的方向,接下来介绍一下光场成像中的重聚焦性质。 Focal stack 之前介绍摄影的时候,我们介绍了一个景深的概念,景深,简单来说,就是摄影的时候,在拍摄主体前后一定的范围内,都能够对焦清楚,而在这个范围之外,场景都会变得模糊...

2020-03-11 19:28:53 369 0

原创 光场成像简介

引言 创世纪之初,上帝说,要有光,于是,就有了光 我们所处的世界,其实就是一个充满光的世界,光线是这个世界最普通,最常见,最神奇的东西,无处不在,却又摸不着,物理学告诉我们,光是一种电磁波,而电磁波有电磁场,所以光,其实也有光场。 光场(Light Field)是空间中光线集合的完备表示,采集并显...

2020-03-08 15:28:59 502 0

原创 关于增量学习的一点总结思考

增量学习 最近几年,学术界开始兴起了一些持续学习,增量学习,终生学习的研究,这个概念本身也是想模仿人的学习过程,人类的学习能力是可以持续的,我们的知识也是一个逐渐积累的过程,但是反观现在的学习模型,从一个任务转移到另外一个任务的时候,新任务上会学习的很好,但是原来的任务就会忘得一干二净,这也是 A...

2020-01-15 22:13:21 1939 0

原创 论文解读:Deep Image Prior

Deep Image Prior 深度卷积网络在图像生成和图像恢复领域,已经得到了越来越广泛的应用,一般这种网络要想取得很好的效果,需要经过大量的图像样本训练,而 deep image prior 的作者提出了一种新的观点,他们认为,生成网络的结构本身就是一种很好的先验,这种网络结构的先验,不需要...

2019-12-24 21:57:38 1310 0

原创 模型优化的熵与不平衡学习

模型优化的熵与不平衡学习 在统计机器学习里,我们经常会遇到一个数据分布不平衡的问题,在我们训练这种数据的时候,往往都会发现分类器会倾向于样本多的那一类,所以说在统计机器学习里,也是会遵循少数服从多数原则的。 不平衡学习,是统计机器学习里非常常见的一类问题,而不平衡学习所反映出来的优化模型的倾向,也...

2019-12-05 22:25:10 239 0

原创 小样本学习的悖论

小样本学习的悖论 引言 这两年,学术界开始兴起了一种 “小样本学习” 的技术,小样本学习的本意是想模仿人类的学习过程,研究者认为人类的学习,从来都不是通过大量的数据死记硬背来实现的,机器想要模仿的人类视觉的能力,比如识别能力,似乎是人类与生俱来的能力,可以轻易的区分开不同种类的东西,不管这东西有什...

2019-11-11 21:33:30 401 0

原创 论文解读:ICCV2019 Best paper SinGAN

SinGAN: Learning a Generative Model from a Single Natural Image 今天介绍一篇非常有趣的论文,同时也是 ICCV 2019 的 best paper,题目叫做 SinGAN: Learning a Generative Model fr...

2019-11-03 17:34:12 1266 0

原创 机器学习的基本原理

引言 人类的本性是好奇,无论何时,总是对未知充满好奇,好奇就会开始去想象,人类的联想与记忆功能是智能发展的基础,没有记忆,就无从想象,没有想象,就无从创造。 人类思想的发展史,就是一个不断好奇,不断想象,不断探索的过程。 在机械时代,主宰人类知识体系的是因果论,那个时候的科学家,研究的都是自然客观...

2019-10-28 21:35:34 2431 1

原创 机器视觉:目标检测

目标检测是计算机视觉领域非常重要的一个应用,是场景理解,多目标识别的前提,

2019-10-21 22:34:22 1166 1

原创 图像处理中的局部运算与滤波

在图像处理中,对图像的滤波是非常常见的一种运算,我们耳熟能详的高斯滤波,双边滤波,导向滤波,

2019-09-25 22:41:52 1008 0

原创 Hough 变换

Hough 变换是图像处理中,检测直线最基本,也是应用最广泛的一种传统方法。虽然现在是深度学习大行其道的时代,但是很多传统的算法,依然有其参考的价值所在,至少从数学表达上来看,是更加的简洁,有理有据。 在介绍 Hough 变换之前,我们先回顾一下中学时代学的一些知识,我们学过直角坐标系,也就是常...

2019-08-04 11:29:06 239 0

原创 计算摄影:梯度域的图像处理

学过图像处理的人,对图像梯度的概念应该都不陌生,图像梯度,可以将一个图像值变成一个向量,如下图所示: 简单来说,就是对像素值,在 x, y 方向进行求导,从而可以得到图像在 x, y 方向的梯度,梯度域的图像处理,就是利用梯度的性质,对图像梯度进行计算,从而达到某些特定的效果,梯度域的图像处理最...

2019-08-03 22:37:59 719 0

原创 计算摄影: 高动态范围成像

在摄影中,曝光是非常重要的一个参数,曝光时间过长,最终拍摄的图像会显得泛白,就是我们常说的 “过曝”,曝光时间不足的话,图像会显得比较暗,也就是所说的 “欠曝” ,现在的拍摄,一般都有一个自动曝光的估计,通过测量环境光照的强度,来设置合适的曝光时间,让最终的图像明亮比较合适。 在真实的场景中,环境...

2019-08-02 21:25:36 437 0

原创 计算摄影:相机成像流程 —— ISP

我们用单反或者手机拍照的时候,从取景到最终出图,是有一个完整的 pipeline 的,今天我们就大概介绍一下这个 pipeline:如何从环境光到 RAW 图到最后的 JPEG 图。 sensor 以前的摄影,都是黑白照片,虽然光的色散很早就发现了,可是彩色照相却很晚才有,尤其是数字照相,人们一...

2019-08-01 21:45:54 1087 0

原创 计算摄影:颜色

我们所处的世界是一个丰富多彩,五颜六色的世界,蓝天白云,红花绿叶,这些都是色彩信息,人眼有感知不同色彩的能力,而人眼所能感受的光线,只是整个自然界存在的电磁波中,非常狭小的一段,如下图所示,大概从 390nm — 700nm 的一个范围,就是这些可见光波,让人类感受到自然界的多姿多彩,计算摄影中,...

2019-07-29 21:58:31 360 0

原创 计算摄影:导论

现在智能手机,最大的一个卖点之一就是拍照,或者说摄影,我们经常听各大手机厂商说手机的拍摄效果要直逼单反,甚至超越单反,但是我们知道,手机的镜头,sensor 应该都没有单反的好,那么要如何达到非常理想的拍摄效果呢,其实一个关键的核心技术就是计算摄影,相比单反来说,手机更依赖于算法去提升拍摄效果。计...

2019-07-22 21:47:06 1071 0

原创 机器学习:增量学习论文解读—— large scale incremental learning

最近,增量学习,持续学习,终生学习的概念越来越火,也引起了学术界工业界的极大关注,我们知道,传统的机器学习,就是给定一个训练集,我们在这个训练集上训练出一个模型,然后在测试集上做测试,这样基本就是一个完整的机器学习流程。增量学习,考虑的是模型持续学习的能力,比如,我们在数据集 D1\mathcal...

2019-07-08 21:21:21 3181 1

原创 图论基础

最近的图卷积网络(GCN)开始受到越来越多的关注,而图卷积网络是由图神经网络(GNN)发展而来,而 GNN 又是由建立在图论的基础之上。 图是一种非常神奇的数据结构,非常直观的表示了结构化数据之间的关系,而且借助线性代数以及矩阵的相关性质,可以将图与矩阵非常完美的结合在一起。 ...

2019-06-21 20:03:45 292 0

原创 机器学习:MixMatch 论文解读

最近谷歌出了一篇有关半监督学习的 paper,几乎可以说是到目前为止,半监督学习领域的集大成者了,在常用的数据集上,取得了非常惊人的效果。这篇 paper,基本把之前半监督学习领域,有用的方式方法都尝试了一下,然后组合出了一个更为有效的方法。 这篇文章的名称叫做 MixMatch: A Holis...

2019-06-01 20:47:49 4026 3

原创 机器学习:弱监督学习简介

在机器学习领域,我们遇见最多的是有监督学习,学习 x 到 y 的一种映射,X 可以看成是特征向量,维度可以从几十到几百,上千,甚至百万,y 可以看成是标签,(x, y) 构成了一个训练样本,有输入,输出。这种形式的学习,都称之为有监督学习。 虽然我们都已步入了大数据时代,每时每刻,我们都会产生很多...

2019-05-29 20:45:03 3938 0

原创 机器学习:Fine tune 神经网络 Mobilenet V2

# Specify where the model checkpoint is (pretrained weights). model_path = args.model_path assert(os.path.isfile(model_path)) ...

2019-05-15 20:18:12 1058 2

原创 机器学习:关于图像分类识别的一些思考

在计算机视觉领域,图像的分类识别,可以说是最基础,最常见的一个问题,从之前的手动特征提取结合传统的分类模型,到如今的深度学习,虽然分类识别领域的各个数据库的识别率在不断被刷新,从常见物体识别,到细粒度物体识别,到人脸识别,似乎各个细分的图像识别领域都在取得不断进步,每次伴随着这些进步,就会有意无意...

2019-04-26 19:31:18 2223 0

原创 机器学习: 利用 Tensorflow 和预训练模型提取特征-- Mobilenet V2

之前介绍了利用 Mobinet V1 做特征提取,从 Tensorflow 的官网上看, Mobilenet V2 的性能比 V1 要更好,今天介绍用 V2 的预训练模型提取特征的方式,基本和 V1 是一样的,只是有一个地方需要注意一下,就是加载网络结构的时候: with tf.contrib.s...

2019-04-04 21:30:33 2896 4

原创 机器学习: 利用 Tensorflow 和预训练模型提取特征-- Mobilenet V1

传统的 CV 问题,一般把特征提取和分类模型的构建训练分成两个步骤,CNN 可以把这两者合在一个网络里,目前很多实验证明,利用大量数据训练过的 CNN 可以用作很好的特征提取器,类似一种特征迁移。 今天介绍一下,如何利用 Tensorflow 和 预先训练好的模型,做特征提取,我们可以用 Tens...

2019-03-24 15:03:52 3368 3

原创 机器学习: 深度学习中的卷积和反卷积

卷积神经网络(CNN)几乎成了目前 CV 领域的主流模型,从最初的常规的 2D 卷积形式发展到现在,研究人员已经提出了各种各样的卷积形式,比如 3D 卷积,depth-wise 卷积, point-wise 卷积,扩张(Atrous)卷积,deconvolution 等等,这些卷积在 CNN 模型...

2019-03-03 11:25:43 536 0

原创 机器学习:Leaning without Forgetting -- 增量学习中的抑制遗忘

传统的机器学习中,训练数据的类别都是固定的,这里也有一个假设,就是测试集也是类别固定的,这也是为什么现在很多模型在人类看来非常白痴的原因,套用一句非常经典的话来说,就是对于一个只见过猫狗的模型来说,那么这个世界在这个模型眼里里,只有猫狗两种可能。 所以很多研究人员开始探索增量学习这种技术,这种技术...

2019-02-17 11:03:49 1448 0

原创 2018 年度读书总结

唯有读书与锻炼不可辜负 《暗网》 这大概可以看成是某种调查文学,向我们揭示一个完全不同的网络世界,犹如浮在水中的冰山,普通人可以看到的只是很小的一部分,还有很多看不到的东西,都隐藏在水面之下。这本书给我的一个强烈感受是参考文献的长度,都快赶上正文了。个人评分三星。 《告白》 日本这个民族真...

2019-01-05 21:40:18 631 0

原创 机器学习:神经网络常见的几种梯度下降优化方式

随机梯度下降,可以说是深度学习的基石,这个看似简单的优化方法,却撑起了整个深度学习,深度神经网络的各种应用,只要涉及到深度神经网络的训练,就一定会用到梯度下降。 ...

2018-12-23 09:27:04 1975 0

原创 机器学习:神经网络的 over fitting

我们在介绍机器学习的模型的时候,经常会遇到 under fitting 与 over fitting 的概念,现在的机器学习,基本是数据驱动型的。

2018-12-09 18:18:38 352 0

原创 机器学习:向量空间中的投影

今天介绍向量空间中的投影,以及投影矩阵。 假设空间中有两个向量 a,b\mathbf{a}, \mathbf{b}a,b,b\mathbf{b}b 在 a\mathbf{a}a 上的投影为 p\mathbf{p}p,我们要计算出 p\mathbf{p}p 到底是多少,如下图所示: 为了计算 p\...

2018-11-18 21:36:06 2678 0

原创 机器学习:矩阵的秩和矩阵的四个子空间

给定一个矩阵 A∈Rm×nA \in R^{m \times n}A∈Rm×n

2018-11-16 22:13:59 2975 8

提示
确定要删除当前文章?
取消 删除