近轴成像的相关性质

本文介绍了薄透镜近轴成像的原理,利用泰勒展开对小角度的三角函数进行近似,从而简化折射定律的计算。通过近轴成像公式和造镜公式(Lensmakersformula),讨论了透镜成像的焦点和焦距,并引入了Raytransfermatrix概念,用于描述透镜系统中光线的追迹转换。内容涵盖了从单面球面到双面透镜的成像分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍薄透镜近轴成像的一些性质,所谓近轴成像,就是入射光线非常靠近光轴,意味着入射角很小。在介绍这些性质之前,我们先来看看三角函数的泰勒展开:

sin ⁡ θ = θ − θ 3 3 ! + θ 5 5 ! − θ 7 7 ! + . . . \sin{\theta} = \theta - \frac{\theta^{3}}{3!} + \frac{\theta^{5}}{5!} - \frac{\theta^{7}}{7!} + ... sinθ=θ3!θ3+5!θ57!θ7+...

cos ⁡ θ = 1 − θ 2 2 ! + θ 4 4 ! − θ 6 6 ! + . . . \cos{\theta} = 1 - \frac{\theta^{2}}{2!} + \frac{\theta^{4}}{4!} - \frac{\theta^{6}}{6!} + ... cosθ=12!θ2+4!θ46!θ6+...

当入射角很小的时候,上面的三角函数可以近似为:

sin ⁡ θ ≈ θ cos ⁡ θ ≈ 1 tan ⁡ θ ≈ θ \sin{\theta} \approx \theta \quad \cos{\theta} \approx 1 \quad \tan{\theta} \approx \theta sinθθcosθ1tanθθ

近轴成像

在这里插入图片描述

如上图所示,假设从物方有一点 P 发出一根近轴光线到达球面,通过球面折射之后到达像方 P’,球面两边介质的折射率分别为 n 和 n’,球面的曲率半径为 r,P 与球面交点的连线构成的角度为 u,P’ 与球面交点的连线构成的角度为 u’,球面交点与球面中心的连线构成的角度为 a,这些角度都是小角度,入射光线与球面法线的夹角为 i, 出射光线与球面法线的夹角为 i’, 球面交点到 PP’ 连线的垂直距离为 h,z 表示物距,z’ 表示像距。

根据光学的折射定律:

n sin ⁡ i = n ′ sin ⁡ i ′ n \sin{i} = n' \sin{i'} nsini=nsini

在角度很小的时候,三角函数可以用泰勒的一阶近似表示,上面的式子可以写成:

n i ≈ n ′ i ′ n i \approx n'i' nini

同理,可以得到:

u ≈ tan ⁡ u ≈ h / z u ′ ≈ tan ⁡ u ′ ≈ h / z ′ a ≈ h / r u \approx \tan{u} \approx h/z \quad u' \approx \tan{u'} \approx h / z' \quad a \approx h/r utanuh/zutanuh/zah/r

根据三角形的内角和定义:

i = u + a a = i ′ + u ′ i = u + a \quad a = i' + u' i=u+aa=i+u

代入上式,可以得到:

n ( u + a ) ≈ n ′ ( a − u ′ ) n(u + a) \approx n'(a - u') n(u+a)n(au)

n ( h / z + h / r ) ≈ n ′ ( h / r − h / z ′ ) n(h/z + h/r) \approx n'(h/r - h/z') n(h/z+h/r)n(h/rh/z)

n / z + n / r ≈ n ′ / r − n ′ / z ′ n/z + n/r \approx n'/r - n'/z' n/z+n/rn/rn/z

n / z + n ′ / z ′ ≈ n ′ / r − n / r n/z + n'/z' \approx n'/r - n/r n/z+n/zn/rn/r

上面的 h h h 消掉了,意味着在近轴成像的情况下,从 P 点发出的光线都能汇聚到 P’ 点上。

当物距足够大的时候,可以认为光线是平行入射的,这种情况下,上面的式子可以写成:

n ′ / z ′ ≈ n ′ / r − n / r ⇒ z ′ ≈ ( r n ′ ) / ( n ′ − n ) n'/z' \approx n'/r - n/r \quad \Rightarrow z' \approx (rn')/(n' - n) n/zn/rn/rz(rn)/(nn)

这个时候的 z 就是薄透镜的焦距 f f f

造镜公式 Lensmaker’s formula

根据上面的薄透镜成像原理,我们可以推导出近轴成像的一般公式:

n / z + n ′ / z ′ ≈ n ′ / r − n / r n/z + n'/z' \approx n'/r - n/r n/z+n/zn/rn/r

上面是只考虑单面的球面的情况,对于两面的情况,可以进行类似的推导。

在这里插入图片描述

如上图所示,假设物点 P 先到达透镜的 A 点,然后传输到 D 点,最后通过透镜折射到 Q 点,这个透镜是由左右两个球面构成的,前面一个球面的曲率半径为 R 1 R_1 R1,球面中心为 C,后面一个球面的曲率半径为 R 2 R_2 R2,球面中心在 E,透镜的折射率为 n n n

先看第一面的折射情况,根据近轴成像原理,及一阶泰勒展开,我们可以得到如下的关系式:

sin ⁡ i 1 = n sin ⁡ r 1 i 1 = n r 1 i 1 = α 1 + β 1 r 1 = β 1 − γ \sin{i_1} = n \sin{r_1} \quad i_1 = n r_1 \quad i_1 = \alpha_1 + \beta_1 \quad r_1 = \beta_1 - \gamma sini1=nsinr1i1=nr1i1=α1+β1r1=β1γ

从上面的式子,可以得到:
α 1 + β 1 = n ( β 1 − γ ) (1) \alpha_1 + \beta_1 = n(\beta_1 - \gamma) \tag{1} α1+β1=n(β1γ)(1)

接下来看第二面的折射情况,同样根据近轴成像关系,以及一阶泰勒展开,可以得到如下的关系式:

sin ⁡ i 2 = n sin ⁡ r 2 i 2 = n r 2 i 2 = α 2 + β 2 r 2 = β 2 + γ \sin{i_2} = n \sin{r_2} \quad i_2 = n r_2 \quad i_2 = \alpha_2 + \beta_2 \quad r_2 = \beta_2 + \gamma sini2=nsinr2i2=nr2i2=α2+β2r2=β2+γ

从上面的式子,可以得到:

α 2 + β 2 = n ( β 2 + γ ) (2) \alpha_2 + \beta_2 = n(\beta_2 + \gamma) \tag{2} α2+β2=n(β2+γ)(2)

将 (1) 和 (2) 合并,可以得到:

α 1 + α 2 = ( n − 1 ) ( β 1 + β 2 ) \alpha_1 + \alpha_2 = (n-1)(\beta_1 + \beta_2) α1+α2=(n1)(β1+β2)

根据上面的三角函数关系近一阶泰勒近似,我们可以得到如下的关系

α 1 = h / s α 2 = h / s ′ β 1 = h / R 1 β 2 = h / R 2 \alpha_1 = h/s \quad \alpha_2 = h/s' \quad \beta_1 = h/R_1 \quad \beta_2 = h/R_2 α1=h/sα2=h/sβ1=h/R1β2=h/R2

最终可以得到:

1 s + 1 s ′ = ( n − 1 ) ( 1 R 1 + 1 R 2 ) (3) \frac{1}{s} + \frac{1}{s'} = (n-1)(\frac{1}{R_1} + \frac{1}{R_2}) \tag{3} s1+s1=(n1)(R11+R21)(3)

公式 (3) 被称为造镜者公式,如果物距 s s s 足够大的时候, s ′ s' s 就对应这个薄透镜的焦距 f f f

1 f = ( n − 1 ) ( 1 R 1 + 1 R 2 ) \frac{1}{f} = (n-1)(\frac{1}{R_1} + \frac{1}{R_2}) f1=(n1)(R11+R21)

所以:

1 s + 1 s ′ = 1 f \frac{1}{s} + \frac{1}{s'} = \frac{1}{f} s1+s1=f1

这个就是薄透镜的高斯成像公式。

Ray transfer matrix 追迹转换矩阵

在近轴成像的前提下,可以得到一个通用的追迹公式,称为追迹转换矩阵。

在这里插入图片描述

如上图所示:

x i = s i θ i x 0 = s 0 θ 0 1 s i + 1 s 0 = 1 f x_i = s_i \theta_i \quad x_0 = s_0 \theta_0 \quad \frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f} xi=siθix0=s0θ0si1+s01=f1

因为透镜的厚度很薄,可以认为 d ≈ 0 d \approx 0 d0,所以 $ x_i \approx x_0$

综合上式,我们可以得到如下的矩阵关系:

[ x 0 θ 0 ] = [ 1 0 − 1 f 1 ] [ x i θ i ] \begin{bmatrix} x_0 \\ \theta_0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} x_i \\ \theta_i \end{bmatrix} [x0θ0]=[1f101][xiθi]

上面的矩阵 [ 1 0 − 1 f 1 ] \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix} [1f101] 就是追迹转换矩阵,如果有多片薄透镜放在一起,可以将多个透镜的追迹转换矩阵连乘即可:

在这里插入图片描述

  • Ref. https://solitaryroad.com/c1034b.htm
  • Ref. http://graphics.cs.cmu.edu/courses/15-463/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值