倾斜原因
map输出数据按照key的hash分配到reduce中,由于key分布不均匀,业务数据本身的特性,建表时考虑不周等原因会造成reduce上的数据量差异过大
- key分布不匀
- 业务数据本身的特性
- 建表时考虑不周
- 某些sql语句本身就有数据倾斜
解决方案
1.参数调节:
hive.map.aggr=true
hive.groupby.skewindata=ture
有数据倾斜的时候进行负载均衡,当选项设定为true,生成的查询计划会有两个MR JOB。第一个MR JOB中,Map的输出结果结合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MR Job再根据预处理的数据结果按照Group By Key分布到Reduce中(这个过程可以保证相同的Group By Key被分布到同一个Reduce中),最后完成最终的聚合操作。
2.SQL语句调节
- 选用join key分布最均匀的表作为驱动表,做好列裁剪和filter操作,以达到两表做join的时候,数据量相对变小的效果。
- 大小表join:使用map join让小的维度表(1000条以下的记录条数)先进内存,在map端完成reduce
- 大表join大表:把空值的key变成一个字符串加上随机数,把倾斜的数据分布到不同的reduce上,由于null值关联不上没处理后并不影响最终效果
- count distinct大量相同的特殊值:count distinct时,将值为空的情况单独处理,如果时计算count distinct,可以不用处理,直接过滤,在最后结果中加1。如果还有其他计算,需要进行group by,可以先将空值单独处理,再和其他计算结果进行union。