TransformerEncoderLayer 理解

>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
>>> encoder_layer
TransformerEncoderLayer(
  (self_attn): MultiheadAttention(
    (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
  )
  (linear1): Linear(in_features=512, out_features=2048, bias=True)
  (dropout): Dropout(p=0.1, inplace=False)
  (linear2): Linear(in_features=2048, out_features=512, bias=True)
  (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
  (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
  (dropout1): Dropout(p=0.1, inplace=False)
  (dropout2): Dropout(p=0.1, inplace=False)
) 

以上layer是按顺序执行的吗???

是的,`nn.TransformerEncoderLayer` 里的操作是按顺序依次执行的,以下是它的处理流程和每个组件的作用:

### 1. **自注意力机制 (`self_attn`)**
   - 输入:`src`(形状为 `(seq_len, batch_size, embed_dim)`)。
   - 通过多头自注意力机制 (`MultiheadAttention`) 计算输入序列中各位置之间的注意力权重,并生成每个位置的上下文向量。
   - 其中,`MultiheadAttention` 中的 `out_proj` 是最后的线性投影层,它将注意力结果映射回嵌入空间。

### 2. **残差连接和层归一化 (`norm1`)**
   - 将自注意力的输出与输入 `src` 进行残差连接:`output = input + self_attention_output`。
   - 然后对残差连接的结果进行 **Layer Normalization**,这有助于加速训练并防止梯度消失。

### 3. **前馈神经网络(FFN)**
   - **第一层线性变换 (`linear1`)**:对层归一化后的输出进行线性映射,输出维度通常是更大的值,如 `2048`。
   - **Dropout (`dropout1`)**:对第一层的输出进行丢弃(dropout),帮助正则化模型。
   - **激活函数(通常是 ReLU)**:虽然在结构中没有显式提到,但通常会在这两个线性层之间使用一个激活函数(如 ReLU)。
   - **第二层线性变换 (`linear2`)**:将前馈网络的输出映射回嵌入空间的维度,即 `512`。

### 4. **残差连接和层归一化 (`norm2`)**
   - 将前馈网络的输出与残差连接:`output = input + ffn_output`。
   - 然后对结果进行 **Layer Normalization**(`norm2`)。

### 5. **Dropout (`dropout2`)**
   - 最后,通过丢弃层对模型输出进行进一步正则化,防止过拟合。

### 处理顺序:
总结来说,`nn.TransformerEncoderLayer` 处理顺序如下:

1. **自注意力** -> 经过多头注意力层的计算。
2. **Layer Normalization 1** -> 对自注意力输出进行归一化。
3. **前馈神经网络** -> 包括两个线性层和激活函数。
4. **Dropout 1** -> 丢弃前馈神经网络中的某些神经元。
5. **Layer Normalization 2** -> 对前馈网络输出进行归一化。
6. **Dropout 2** -> 最后的丢弃操作。

每个步骤都有残差连接,这样可以在反向传播时保留原始信息,防止梯度消失。

### 总结:
是的,`nn.TransformerEncoderLayer` 按顺序依次处理输入,执行自注意力、前馈神经网络、层归一化、丢弃等操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值