一 原题
A square arrangement of numbers
1 2 3 4 5 2 1 4 5 3 3 4 5 1 2 4 5 2 3 1 5 3 1 2 4is a 5 x 5 Latin Square because each whole number from 1 to 5 appears once and only once in each row and column.
Write a program that will compute the number of NxN Latin Squares whose first row is:
1 2 3 4 5.......NYour program should work for any N from 2 to 7.
PROGRAM NAME: latin
INPUT FORMAT
One line containing the integer N.SAMPLE INPUT (file latin.in)
5
OUTPUT FORMAT
A single integer telling the number of latin squares whose first row is 1 2 3 . . . N.SAMPLE OUTPUT (file latin.out)
1344
二 分析
给定正整数n,n最大为7,要求构造n*n的矩阵,叫Latin阵。矩阵内的元素为[1, n]中的数,第一行从左到右为1、2、3...n,要求每一行,每一列都不含有重复的元素。要求输出全部可行解的个数。
思路肯定是搜索,有一个剪枝是很直观的,题目要求了第一行是1-n,我们可以规定第一列也是1-n,这样得到的方案数乘以(n-1)!就是最终答案。
但最后n=7时,最终答案超过10^10,即使除去6!=720,遍历所有的合法解也会超时,因此需要进一步剪枝。明确一下现在的问题:求所有第一行是1-n,第一列也是1-n的所有Latin阵数量。
一个很强力的剪枝,对于下面两种情况:这两种情况的方案数应当相同。解释如下:
1 | 2 | 3 | 4 | 5 |
2 | 1 | x | x | x |
3 | 4 | x | x | x |
4 | 5 | x | x | x |
5 | 3 | x | x | x |
1 | 2 | 3 | 4 | 5 |
2 | 3 | x | x | x |
3 | 1 | x | x | x |
4 | 5 | x | x | x |
5 | 4 | x | x | x |
判定情况等价的依据:考虑前两列形成的循环节,情况一中循环节为(2, 1), (4, 5, 3);情况二中循环节为(2, 3, 1), (5, 4)。这两个循环节同构(数量相等,排序后每个循环节大小一样)。
证明方案数相等:对于情况二的一组合法解,规定置换规则:2->4, 3->5, 1->3, 5->2, 4->1,那么情况二变为:
3 | 4 | 5 | 1 | 2 |
4 | 5 | x | x | x |
5 | 3 | x | x | x |
1 | 2 | x | x | x |
2 | 1 | x | x | x |
按照第一列排序得到:
1 | 2 | x | x | x |
2 | 1 | x | x | x |
3 | 4 | 5 | 1 | 2 |
4 | 5 | x | x | x |
5 | 3 | x | x | x |
三 代码
运行结果:
USER: Qi Shen [maxkibb3] TASK: latin LANG: C++ Compiling... Compile: OK Executing... Test 1: TEST OK [0.000 secs, 4300 KB] Test 2: TEST OK [0.000 secs, 4300 KB] Test 3: TEST OK [0.000 secs, 4300 KB] Test 4: TEST OK [0.000 secs, 4300 KB] Test 5: TEST OK [0.000 secs, 4300 KB] Test 6: TEST OK [0.448 secs, 4300 KB] All tests OK.
Your program ('latin') produced all correct answers! This is yoursubmission #4 for this problem. Congratulations!
AC代码:
/*
ID:maxkibb3
LANG:C++
PROB:latin
*/
#include<fstream>
#include<iostream>
#include<map>
#include<set>
#include<cstring>
using namespace std;
#define LL long long
#define mp make_pair
ifstream fin("latin.in");
ofstream fout("latin.out");
int n, s[10][10];
bool row[10][10], column[10][10];
// recurring period related
int label[10];
map<int, LL> hash_table;
int get_hash() {
memset(label, 0, sizeof(label));
int l = 1, ret = 0;
set<int> periods;
for(int i = 0; i < n; i++) {
if(label[i]) continue;
label[i] = l;
int x = i, len = 1;
while(label[s[x][1]] != l) {
label[s[x][1]] = l;
x = s[x][1];
len++;
}
periods.insert(len);
l++;
}
for(set<int>::iterator it = periods.begin(); it != periods.end(); it++) {
ret = ret * 10 + *it;
}
return ret;
}
LL dfs(int r, int c) {
if(c == n - 1) {
return 1;
}
LL ret = 0, delta;
int hashval;
for(int i = 0; i < n; i++) {
if(row[r][i] || column[c][i]) {
continue;
}
row[r][i] = column[c][i] = true;
s[r][c] = i;
if(r == n - 1 && c == 1) {
hashval = get_hash();
map<int, LL>::iterator it = hash_table.find(hashval);
if(it != hash_table.end()) {
ret += it->second;
row[r][i] = column[c][i] = false;
continue;
}
}
if(r == n - 1) {
delta = dfs(1, c + 1);
}
else {
delta = dfs(r + 1, c);
}
if(r == n - 1 && c == 1) {
hash_table.insert(mp(hashval, delta));
}
ret += delta;
row[r][i] = column[c][i] = false;
}
return ret;
}
int main() {
fin >> n;
for(int i = 0; i < n; i++) {
row[0][i] = column[i][i] = true;
row[i][i] = column[0][i] = true;
}
LL ans = dfs(1, 1);
for(int i = 2; i <= n - 1; i++) {
ans *= i;
}
fout << ans << endl;
return 0;
}