[BZOJ]3238 差异 后缀树

3238: [Ahoi2013]差异

Time Limit: 20 Sec   Memory Limit: 512 MB
Submit: 3905   Solved: 1762
[ Submit][ Status][ Discuss]

Description

Input

一行,一个字符串S

Output

 

一行,一个整数,表示所求值

Sample Input

cacao

Sample Output


54

HINT



2<=N<=500000,S由小写英文字母组成

Source

[ Submit][ Status][ Discuss]


HOME Back

  今天顺便看了下后缀树是什么玩意儿... 明白了原来就是反串的parent树?

  这道题对反串建后缀自动机, 求出后缀树后, 两个后缀在后缀树上的lca的长度就是lcp, 那么dfs一遍就知道每个点被贡献了多少次... 就可以统计答案了.

  其实没必要dfs直接基数排序一下就好了.

#include<bits/stdc++.h>
using namespace std;
const int maxn = 5e5 + 5;
int n;
char ss[maxn];
struct Suffix_Automaton {
    long long ans;
    int tot, last, root;
    int cnt[maxn], sa[maxn << 1];
    int siz[maxn << 1], c[maxn << 1][26], par[maxn << 1], len[maxn << 1];
    inline void init() {
        tot = 0;
        root = last = ++ tot;
    }
    inline void insert(int idx) {
        int p = last, np = last = ++ tot;
        len[np] = len[p] + 1, siz[np] = 1;
        while (p && !c[p][idx]) c[p][idx] = np, p = par[p];
        if (!p) par[np] = root;
        else {
            int q = c[p][idx];
            if (len[q] == len[p] + 1) par[np] = q;
            else {
                int nq = ++ tot;
                len[nq] = len[p] + 1, par[nq] = par[q];
                memcpy(c[nq], c[q], sizeof(c[q]));
                par[np] = par[q] = nq;
                while (c[p][idx] == q) c[p][idx] = nq, p = par[p];
            }
        }
    }
    inline void Radix_sort() {
        for (register int i = 1; i <= tot; ++ i) cnt[len[i]] ++;
        for (register int i = 1; i <= n; ++ i) cnt[i] += cnt[i - 1];
        for (register int i = 1; i <= tot; ++ i) sa[cnt[len[i]] --] = i; 
    }
    inline long long solve() {
        Radix_sort();
        for (register int i = tot; i > 1; -- i) {
            int nw = sa[i];
            ans += 1ll * len[par[nw]] * siz[par[nw]] * siz[nw];
            siz[par[nw]] += siz[nw];
        }
        return ans << 1;
    }
}sam;
int main() {
    scanf("%s", ss);
    n = strlen(ss);
    sam.init();
    for (register int i = n - 1; ~i; -- i) sam.insert(ss[i] - 'a');
    printf("%lld\n", (1ll * n * (n + 1) * (n - 1) >> 1) - sam.solve());
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值