【题目描述】
找出正整数M和N之间的所有真素数。(N>M)
真素数的定义:如果一个正整数P为素数,且其反序也为素数,那么P就为真素数。
例:11,13均为真素数,因为11的反序还是为11,13的反序为31也为素数。
【输入输出样例】
输入:
10 35
输出:
11,13,17,31
【解题技巧】
枚举N到M所有的数,并求出所有数的反序(注意:不要用i直接求反序,不然i会被覆盖,判断时会有问题),再判断是否为素数,注意最后没输出的No.
【源代码】
#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
using namespace std;
bool check(int x){
if(x==1)return 0;
for(int i=2;i<=sqrt(x);i++){
if(x%i==0)return 0;
}
return 1;
}//判断素数函数
int main(){
int n,m,t,ii;//t用来存储i的倒叙,ii用来备份i
cin>>n>>m;
bool shuchu=1;
for(int i=n;i<=m;i++){
ii=i;t=0;//备份i,初始t
while(ii!=0){
t*=10;
t+=ii%10;
ii/=10;
}//运用while,把t变成i的反序
if(check(t)&&check(i)){
if(shuchu==0){
cout<<",";
}//注意逗号的输出
cout<<i;
shuchu=0;//输出过了则把输出变成false
}
}
if(shuchu==1){
cout<<"No";
}//如果没有输出,记得输出No
return 0;
}
//♂_The_LYH_25_♂