自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 机器学习知识点梳理(回归模型、分类模型、聚类模型、评估方法)-思维导图

本文系统梳理了机器学习三大任务模型及其评估方法: 回归模型:包括线性回归、决策树回归和SVM回归(效果较差),评估指标以R²和均方误差为主 分类模型:涵盖逻辑回归、决策树、SVM和朴素贝叶斯,重点评估指标为查准率、召回率和F1得分 聚类模型:对比K-means(基于原型)、DBSCAN(基于密度)和层次聚类,使用轮廓系数评估聚类效果 各模型均给出核心特点、适用场景及API调用方式,形成完整的机器学习知识框架。

2025-12-31 20:24:35 289

原创 机器学习知识点梳理(回归模型、分类模型、聚类模型、评估方法)

本文梳理了机器学习核心知识点和常用工具包,主要包括: 三大类模型: 回归模型:线性回归、决策树、SVM 分类模型:逻辑回归、决策树、SVM、朴素贝叶斯 聚类模型:kmeans、DBSCAN、层次聚类 评估方法: 回归:R2得分、均方误差 分类:查准率、召回率、F1得分 聚类:轮廓系数 核心工具包及功能: NumPy:科学计算基础 sklearn:提供预处理、模型构建和评估模块 Matplotlib:数据可视化 pickle:模型持久化 关键实现代码: 线性回归及正则化变体 多项式回归 决策树回归 模型评估指

2025-12-31 20:10:02 740

原创 新冠检测例子学习查准率和召回率

在新冠肺炎检测中,**查准率**关注的是"被判定为阳性的人里,有多少真正感染"。如果查准率低,意味着很多健康人被误诊为阳性,导致隔离资源浪费、交叉感染风险增加,以及民众不必要的心理恐慌。**召回率**则关注"所有真实感染者中,有多少被检测出来"。如果召回率低,意味着大量感染者漏网,他们在社区中自由活动,成为移动传染源,导致疫情扩散失控。两者难以兼得:提高查准率往往要牺牲召回率(检测标准更严格),反之亦然。实际应用中需权衡取舍——大规模筛查阶段更重视召回率

2025-12-25 21:11:12 938

原创 Python积分与求导完全指南

本文介绍了Python在微积分和概率统计中的应用指南。主要内容包括: 求导基础与实战:讲解了求导的四大意义(变化率、切线斜率、优化问题、几何对称性),并演示了使用SymPy库进行多项式、三角函数、指数函数和对数函数求导的方法。 积分基础与实战:阐述了积分的几何意义和数学意义,展示了如何使用SymPy计算不定积分和定积分,包括常见函数的积分规则。 概率分布函数:重点介绍了scipy.stats库中的三大核心函数:cdf(累积分布函数)、ppf(分位点函数)及其应用场景,如计算概率、确定临界值等。 文章通过代码

2025-12-16 18:14:22 925

原创 必看!商业数据分析指标术语大全

商业数据分析指标体系摘要 本文系统梳理了五大类互联网产品的核心数据分析指标体系: 电商类:基于AARRR模型,涵盖用户增长、活跃、留存、转化和传播全链路指标 内容资讯类:围绕内容生产、分发、消费、互动和变现构建闭环评估体系 社交类:聚焦关系建立、内容互动、用户留存和商业变现四个维度 工具类:从工具价值、使用效率、用户依赖、场景延伸和商业变现评估产品价值 游戏类:贯穿新手引导、核心玩法、社交系统、付费设计和长期运营全生命周期 每类产品均提供可视化框架和关键指标说明,帮助业务人员快速掌握数据驱动决策的核心评估维

2025-12-11 11:22:40 520

原创 Python机器学习必修课:数据预处理与回归模型实战

本文介绍了机器学习中的数据预处理技术及其在回归模型中的应用。主要内容包括: 数据预处理:详细讲解了标准化(Z-Score)、归一化(Min-Max)和L1/L2归一化的原理、数学公式及实现方法,强调预处理对模型性能的重要性。 回归模型:涵盖线性回归、多项式回归和正则化回归的核心概念,分析不同回归方法的适用场景。 实践指导:提供Python代码示例展示如何使用sklearn实现数据预处理,并讨论模型评估与保存的最佳实践。 文章通过直观类比和数学公式相结合的方式,帮助读者理解预处理技术的本质,并给出标准化与归一

2025-12-08 12:14:28 1002

原创 pandas数据合并

Pandas提供了强大的数据合并功能,主要包括堆叠合并(concat)和主键合并(merge)两种方式。堆叠合并分为横向堆叠(axis=1)和纵向堆叠(axis=0),前者用于增加列特征,后者用于增加行记录。concat函数支持多种参数设置,包括合并方向、连接方式(outer/inner)、索引处理等。在实际应用中,合并前需注意索引对齐问题,避免产生NaN值。典型应用场景包括合并不同时间段或不同部门的数据。掌握这些合并技巧能有效提高数据预处理效率。

2025-12-05 19:49:44 584

原创 Pandas 描述分析和分组分析学习文档

Pandas数据分析摘要 本文档系统介绍了使用Pandas进行数据分析的核心方法,包含以下关键内容: 环境配置:导入NumPy、Pandas、Matplotlib等库,设置中文显示,讲解CSV数据读取方法及常见编码问题处理。 描述性分析: 使用info()检查数据完整性 通过describe()获取8个关键统计量 采用直方图、箱线图和密度曲线可视化数值分布 分组分析:详细讲解groupby操作,包括单列/多列分组、聚合函数应用,以及数据透视表和交叉表的使用方法。 可视化技巧:结合Matplotlib和Sea

2025-12-05 19:45:29 866

原创 Python数据可视化学习文档-pandas-matplotlib

本文介绍了Python数据可视化的核心工具和方法,重点涵盖Pandas和Matplotlib两大库的使用。主要内容包括:1)环境配置与中文显示设置;2)Pandas绘图基础,讲解plot()方法参数及图表类型选择;3)常用图表实现,包括折线图(趋势分析)、柱形图/条形图(类别对比)和饼图(占比展示)的代码示例与最佳实践。文档强调数据排序、参数配置等关键技巧,并提供可视化场景选择建议,帮助用户快速掌握Python数据可视化核心技能。

2025-12-03 00:46:35 1073 1

原创 Pandas数据分析完整学习指南

Pandas数据分析完整指南摘要 Pandas是Python核心数据分析库,提供Series和DataFrame两种核心数据结构。本指南系统讲解: 基础数据结构:Series(一维带标签数组)和DataFrame(二维表格)的创建与操作 数据处理:包括字符串操作(strip/split/replace等)、索引访问、属性查询 高级特性:继承NumPy的向量化运算、统计函数应用 数据I/O:支持多种格式数据读取与存储 数据库连接:与SQL数据库的交互方法 重点功能: Series支持字典创建和多种索引方式 字

2025-12-02 18:01:33 854

原创 NumPy数值计算完整学习指南

# NumPy数值计算完整学习指南> 💡 **核心要点**:NumPy是Python数据分析的基础库,提供高效的多维数组对象和数值计算功能,比Python原生列表快10-100倍!---## 📚 目录1. [NumPy简介与环境配置](#1-numpy简介与环境配置)2. [数组创建方法](#2-数组创建方法)3. [数组属性与类型](#3-数组属性与类型)4. [数组索引与切片](#4-数组索引与切片)5. [数组统计函数](#5-数组统计函数)6. [数学运算函数](#6-

2025-12-02 17:34:43 1086 1

原创 隐马尔可夫模型(HMM)前向算法最通俗的理解

HMM前向算法通俗解析 本文用生活化例子直观讲解隐马尔可夫模型(HMM)的前向算法。通过"天气-打伞"的类比,将复杂的数学公式转化为容易理解的动态过程:算法通过逐日计算三种天气状态(晴/阴/雨)的可能性,考虑前一天所有可能的转移路径,并乘以当前观测(打伞/不打伞)的概率。最终将所有可能路径的概率相加,得到整个观测序列出现的总概率。核心思想可概括为:当前状态概率=(前一天各状态转移概率之和)×当前观测概率。这种分解方法使复杂的序列概率计算变得清晰可操作。

2025-11-28 12:48:55 704

原创 SQL 语句执行顺序 vs 写法顺序详解

SQL语句执行顺序与写法顺序解析 SQL语句的执行顺序与书写顺序存在显著差异。基础SELECT语句的执行顺序为:FROM→WHERE→SELECT→ORDER BY→LIMIT。带GROUP BY的聚合查询执行顺序为:FROM→WHERE→GROUP BY→聚合函数→HAVING→SELECT→ORDER BY→LIMIT。多表JOIN查询则先执行表连接再过滤。WHERE作用于原始数据过滤,HAVING则对分组结果进行筛选。UNION查询先执行各SELECT语句,再合并结果集。理解执行顺序有助于编写高效SQ

2025-11-21 14:06:44 518

原创 1. 图像处理理论和应用-深度学习笔记

全连接层中每个神经元与上一层所有神经元相连。公式:其中( W ):权重矩阵( b ):偏置向量( x ):输入向量( y ):输出向量多通道输入 → 每个卷积核对每个通道单独卷积 → 结果求和 → 输出一个特征图。GAN = 生成器(造假) + 判别器(识假)通过对抗训练,让模型学会**“创造真实感数据”**。

2025-11-20 19:23:59 754

原创 SQL 自定义函数与存储过程知识点整理

本文整理了SQL中自定义函数与存储过程的核心知识点。自定义函数用于返回单一值,适合简单计算和数据转换;存储过程处理复杂业务逻辑,可返回完整结果集。文章详细介绍了两种方法的创建语法、调用方式及典型应用场景,并通过具体示例展示了它们的使用方法(如价格计算、条件打折等)。关键区别在于:函数通过RETURN返回值,存储过程通过SELECT返回结果集;函数嵌入SELECT调用,存储过程用CALL调用。本文还提供了查看、删除函数/存储过程的操作命令,帮助开发者合理选择和使用这两种数据库编程工具。

2025-11-17 09:37:17 280

原创 SQL 文本函数知识点整理

📝 SQL 文本函数摘要 核心功能 REPLACE():字符串替换 SUBSTR()/SUBSTRING():子串提取 UPPER()/LOWER():大小写转换 LENGTH()/CHAR_LENGTH():计算字节/字符长度 TRIM()系列:去除空白字符 典型应用 数据清洗(标准化、去空白) 字符串解析(提取子串、拼接) 格式转换(大小写、单位去除) 文本处理(敏感词替换、字符统计) 使用注意 函数对原数据无影响(需UPDATE才能修改) 中英文长度计算差异(LENGTH与CHAR_LENGTH)

2025-11-17 09:36:16 1061

原创 SQL 窗口函数知识点整理

SQL窗口函数知识点摘要(149字): 窗口函数通过OVER()子句实现保留明细数据同时添加统计值。三种主要用法:1)OVER()空子句计算全表统计;2)PARTITION BY分组计算组内统计;3)ORDER BY指定行窗口范围计算累计值。常用分析函数包括MAX/MIN/SUM/AVG等聚合函数,以及LEAD/LAG等偏移函数。相比GROUP BY,PARTITION BY保留明细行。典型应用包括计算分组内极值、累计值、相邻行差值等。语法示例:SUM(price)OVER(PARTITION BY pre

2025-11-14 11:19:12 876

原创 SQL 表关联知识点整理

SQL表关联知识要点: 关联方式:包括笛卡尔积、子查询和JOIN(推荐),其中JOIN通过ON子句直观建立表关系 连接类型: 内连接(INNER JOIN):仅返回匹配记录 外连接(LEFT/RIGHT JOIN):保留主表所有记录,非主表不匹配显示NULL 多表关联:可链式连接多个表,常用于复杂查询 结合聚合:JOIN常与GROUP BY和聚合函数配合使用,如统计各科平均分 注意事项:区分ON和WHERE条件位置,避免外连接意外退化为内连接

2025-11-14 11:18:18 881

原创 SQL 子查询知识点整理

在一个查询语句中嵌套另一个查询语句。

2025-11-10 17:16:22 335

原创 SQL 日期函数知识点整理

本文整理了SQL中常用的日期函数知识,主要包括: 获取当前日期时间的函数(CURDATE、NOW等) 提取时间单位的函数(YEAR、MONTH、DAY等) 日期计算方法(DATE_ADD、DATE_SUB) 时间差计算(DATEDIFF、TIMESTAMPDIFF) 实际应用场景,如统计本月销售额、计算书籍出版时长等。文章还提供了常用日期函数速查表,帮助开发者快速掌握SQL日期处理技巧。

2025-11-10 17:15:04 330

原创 SQL 聚合查询知识点整理

SQL聚合查询核心知识点整理:涵盖COUNT/SUM/MAX/MIN/AVG等聚合函数用法,GROUP BY分组查询,HAVING聚合后过滤,DISTINCT去重操作。详解条件聚合(IF/CASE WHEN)、字符串聚合(GROUP_CONCAT)、日期/数值处理函数,并说明DQL语句执行顺序。包含多个实用示例,如按作者统计书籍数量、计算书籍价值占比、日期分组分析等,适合数据库查询学习参考。

2025-11-08 01:33:15 858

原创 SQL DQL 高级查询知识点整理

本文系统整理了SQL高级查询的核心知识点,包括模糊查询(LIKE)、排序(ORDER BY)、限制(LIMIT)和联合查询(UNION)。详细说明了LIKE通配符的使用、多列排序规则、LIMIT分页语法及其常见应用场景,重点解析了UNION与UNION ALL的区别。通过实例演示了WHERE、ORDER BY和LIMIT的组合使用,以及多表联合查询的实现方法。最后总结了高级查询的执行流程和注意事项,为进行复杂SQL查询提供了完整的技术指南。

2025-11-07 17:10:45 407

原创 SQL DQL 知识点整理

本文整理了SQL DQL(数据查询语言)的核心知识点,重点介绍了SELECT语句的语法结构和使用场景。主要内容包括:基础SELECT语法、算术运算符、条件判断(IF/CASE WHEN)、比较运算符(含空值判断、IN和BETWEEN)、逻辑运算符(AND/OR/NOT)以及运算符优先级。文章特别强调了SELECT的强大功能,如脱离表执行计算、控制列顺序、生成计算列和取别名等操作,并提供了丰富的实际应用示例。最后总结了DQL的核心用途和执行结构,为数据查询操作提供了全面指导。

2025-11-07 17:09:08 407

原创 SQL DML 知识点整理

📚 SQL DML 知识点摘要 DML(数据操纵语言)主要包含增删改查四大核心操作: INSERT:插入单行或多行数据,支持指定列插入和特殊值处理 UPDATE:修改数据,可通过WHERE条件精确控制修改范围 DELETE:删除数据,注意NULL值的特殊判断方式(IS NULL) SELECT:基本查询功能 关键区别: DML操作数据行(内容),DDL操作表结构 NULL表示未知值,与0和空字符串不同 典型应用场景包括数据录入、修改和清理,所有操作都需谨慎使用WHERE条件以避免全表操作。

2025-11-06 16:53:21 372

原创 SQL DDL 知识点整理

本文总结了SQL DDL(数据定义语言)的核心知识点,包括基础语法规则、数据库和表的CRUD操作、常见数据类型、表约束条件以及表结构修改方法。主要内容涵盖:SQL指令的书写规范(大小写敏感、分号结尾、注释方式);数据库的创建、查看、使用和删除;表的创建、复制、查看和删除操作;常用数据类型介绍;主键、自增、唯一和非空等约束条件;通过ALTER命令实现列和表结构的修改;以及命名规范和完整操作示例。这些知识为数据库管理提供了基础框架,适合初学者快速掌握SQL DDL的核心概念。

2025-11-06 16:51:34 280

原创 GitHub 历史记录回滚操作指南(优化版)

GitHub 历史记录回滚操作指南

2025-02-14 00:47:27 1237

原创 数据库(双语)专有名词中英文对照表——数据库考试必备

数据库(双语)专有名词中英文对照表——数据库考试必备

2025-01-07 20:07:10 1115

原创 优雅翻页时钟与倒计时项目说明

这是一个基于纯前端技术栈开发的优雅翻页时钟与倒计时应用,具有现代化的UI设计和流畅的动画效果,具备屏幕常亮属性。实时时钟显示倒计时功能屏幕常亮功能2. 屏幕常亮实现3. 倒计时核心逻辑UI设计特点毛玻璃效果背景渐变背景色悬浮效果响应式设计优雅的动画过渡运行截图实时时钟显示界面倒计时功能界面注:屏幕常亮功能需要浏览器支持Web Wake Lock API

2025-01-02 00:42:31 1357 1

原创 零基础速通MySQL中的触发器基本概念

零基础速通MySQL中的触发器基本概念从触发器的基本概念、创建方式以及常见应用三个部分来细致讲解,并通过实例了解其功能。触发器的主要作用是对数据进行自动处理,例如日志记录、数据验证、自动更新等。MySQL中的触发器(Trigger)是一种特殊的存储程序,它会在某些表上的。假设在员工表中,我们不允许将工资设置为负数,更新时要自动将负数改为0。通过上述内容和实例,希望你对MySQL触发器有了清晰的理解。,每次向该表插入数据时,我们希望将操作记录存入日志表。每次删除订单记录时,我们希望自动恢复对应商品的库存。

2024-11-21 01:51:09 514 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除