机器学习-监督学习

监督学习旨在通过已有的训练样本(即已知数据以及其对应的输出)来训练,从而得到一个最优模型,再利用这个模型将所有新的数据样本映射为相应的输出结果,对输出结果进行简单的判断从而实现分类的目的,那么这个最优模型也就具有了对未知数据进行分类的能力。监督学习中只要输入样本集,机器就可以从中推演出制定目标变量的可能结果.如协同过滤推荐算法,通过对训练集进行监督学习,并对测试集进行预测,从而达到预测的目的。我们可以根据预测的结果将监督学习分为两类:回归分析和分类。

分类技术预测的数据对象是离散值。例如,电子邮件是否为垃圾邮件,肿瘤是癌性还是良性等等。 分类模型将输入数据分类。 典型应用包括医学成像,信用评分等。

回归技术预测的数据对象是连续值。 例如,温度变化或功率需求波动。 典型应用包括电力负荷预测和算法交易等。回归模型包括一元回归和多元回归,线性回归和非线性回归

监督学习步骤:

监督式学习有两种形态的模型。最一般的,监督式学习产生一个全域模型,会将输入物件对应到预期输出。而另一种,则是将这种对应实作在一个区域模型。(如案例推论及最近邻居法)。为了解决一个给定的监督式学习的问题(手写辨识),必须考虑以下步骤:

  1. 决定训练资料的范例的形态。在做其它事前,工程师应决定要使用哪种资料为范例。譬如,可能是一个手写字符,或一整个手写的词汇,或一行手写文字。
  2. 搜集训练资料。这资料须要具有真实世界的特征。所以,可以由人类专家或(机器或传感器的)测量中得到输入物件和其相对应输出。
  3. 决定学习函数的输入特征的表示法。学习函数的准确度与输入的物件如何表示是有很大的关联度。传统上,输入的物件会被转成一个特征向量,包含了许多关于描述物件的特征。因为维数灾难的关系,特征的个数不宜太多,但也要足够大,才能准确的预测输出。
  4. 决定要学习的函数和其对应的学习算法所使用的数据结构。譬如,工程师可能选择人工神经网络和决策树。
  5. 完成设计。工程师接着在搜集到的资料上跑学习算法。可以借由将资料跑在资料的子集(称为验证集)或交叉验证(cross-validation)上来调整学习算法的参数。

监督学习算法比较

朴素贝叶斯

朴素贝叶斯属于生成式模型(关于生成模型和判别式模型,主要还是在于是否是要求联合分布),非常简单,你只是做了一堆计数。如果注有条件独立性假设(一个比较严格的条件),朴素贝叶斯分类器的收敛速度将快于判别模型,如逻辑回归,所以你只需要较少的训练数据即可。即使NB条件独立假设不成立,NB分类器在实践中仍然表现的很出色。它的主要缺点是它不能学习特征间的相互作用,用mRMR中R来讲,就是特征冗余。引用一个比较经典的例子,比如,虽然你喜欢Brad Pitt和Tom Cruise的电影,但是它不能学习出你不喜欢他们在一起演的电影。

优点:

  1. 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
  2. 对小规模的数据表现很好,能个处理多分类任务,适合增量式训练;
  3. 对缺失数据不太敏感,算法也比较简单,常用于文本分类。

缺点:

  1. 需要计算先验概率;
  2. 分类决策存在错误率;
  3. 对输入数据的表达形式很敏感。

朴素贝叶斯算法代码实例:

#计算类别的在总体数据中的概率 即 P(c)

def P(data,cls_val,cls_name="class"):

cnt = 0.0

for e in data:

    if e[cls_name] == cls_val:

        cnt += 1

return cnt/len(data)

#计算某个类别下某个属性的概率 即先验概率 P(x|c)

def PT(data,cls_val,attr_name,attr_val,cls_name="class"):

cnt1 = 0.0

cnt2 = 0.0

for e in data:

    if e[cls_name] == cls_val:

        cnt1 += 1

        if e[attr_name] == attr_val:

            cnt2 += 1

return cnt2/cnt1

#根据测试数据统计特征概率P(x),并计算后验概率 p(c|x)

def NB(data,test,cls_y,cls_n):

PY = P(data,cls_y)

PN = P(data,cls_n)

for key,val in test.items():

    print (key,val)

    PY *= PT(data,cls_y,key,val)

    PN *= PT(data,cls_n,key,val)

return {cls_y:PY,cls_n:PN}

Logistic Regression(逻辑回归)

属于判别式模型,有很多正则化模型的方法(L0, L1,L2,etc),而且你不必像在用朴素贝叶斯那样担心你的特征是否相关。与决策树与SVM机相比,你还会得到一个不错的概率解释,你甚至可以轻松地利用新数据来更新模型(使用在线梯度下降算法,online gradient descent)。如果你需要一个概率架构(比如,简单地调节分类阈值,指明不确定性,或者是要获得置信区间),或者你希望以后将更多的训练数据快速整合到模型中去,那么使用它吧。

优点:

  1. 实现简单,广泛的应用于工业问题上;
  2. 分类时计算量非常小,速度很快,存储资源低;
  3. 便利的观测样本概率分数;
  4. 对逻辑回归而言,多重共线性并不是问题,它可以结合L2正则化来解决该问题;

缺点:

  1. 当特征空间很大时,逻辑回归的性能不是很好;
  2. 容易欠拟合,一般准确度不太高
  3. 不能很好地处理大量多类特征或变量;
  4. 只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分;
  5. 对于非线性特征,需要进行转换;

线性回归

线性回归是用于回归的,而不像Logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解。

优点:实现简单,计算简单;

缺点:不能拟合非线性数据;

最近邻算法-KNN

最近邻算法的主要过程为:

  1. 计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等)
  2. 对上面所有的距离值进行排序
  3. 选前k个最小距离的样本
  4. 根据这k个样本的标签进行投票,得到最后的分类类别

 

如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响。但会使类别之间的界限变得模糊。一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。

近邻算法具有较强的一致性结果。随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。

KNN算法的优点:

  1. 理论成熟,思想简单,既可以用来做分类也可以用来做回归;
  2. 可用于非线性分类;
  3. 训练时间复杂度为O(n);
  4. 对数据没有假设,准确度高,对outlier不敏感;

缺点:

  1. 计算量大;
  2. 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
  3. 需要大量的内存;

KNN算法实现:

def classify0(intX,dataSet,labels,k):

    '''获取行数,第二个为列数 shape返回tuple'''

    dataSetSize = dataSet.shape[0]

    '''生成dateSetSize行,1列的矩阵,值都是intX,求出每一项与dataSet差'''

    diffMat = np.tile(intX,(dataSetSize,1)) - dataSet

    '''针对每项差值取平方'''

    sqDiffMat = diffMat ** 2

    '''将每一行向量相加'''

    sqDistances = sqDiffMat.sum(axis=1)

    '''对结果开根号'''

    distances = sqDistances ** 0.5

    '''排序 选取距离最小的K个点'''

    sortedDistIndicies = distances.argsort()

    classCount = {}

    for i in range(k):

    voteLabel = labels[sortedDistIndicies[i]]

    classCount[voteLabel] = classCount.get(voteLabel,0) + 1

    sortedClassCount = sorted(classCount.iteritems(),key = operator.itemgetter(1),reverse=True)

    return sortedClassCount[0][0]

决策树

易于解释。它可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况)。它的缺点之一就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF(或提升树boosted tree)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一丁点),它训练快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以在以前都一直很受欢迎。

决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

优点:

  1. 计算简单,易于理解,可解释性强;
  2. 比较适合处理有缺失属性的样本;
  3. 能够处理不相关的特征;
  4. 在相对短的时间内能够对大型数据源做出可行且效果良好的结果。

缺点:

  1. 容易发生过拟合(随机森林可以很大程度上减少过拟合);
  2. 忽略了数据之间的相关性;
  3. 对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征(只要是使用了信息增益,都有这个缺点,如RF)。

构建树python代码:

def createTree(dataSet,labels):

classList = [example[-1] for example in dataSet]

'''类别完全相同则停止划分'''

if classList.count(classList[0] == len(classList):

return classList[0]

'''遍历所有特征时返回出现次数最多的

if len(dataSet[0]) == 1:

return majorityCnt(classList)

bestFeat = chooseBestFeatureToSplit(dataSet)

bestFeatLabel = labels[bestFeat]

myTree = {bestFeatLabel:{}]

del(labels[bestFeat])

'''得到列表包含所有属性值'''

featValues = [example[beatFeat] for example in dataSet]

uniqueVals = set(featValues)

for value in uniqueVals:

subLabels = label[:]

myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)

return myTree

Adaboosting

Adaboost是一种加和模型,每个模型都是基于上一次模型的错误率来建立的,过分关注分错的样本,而对正确分类的样本减少关注度,逐次迭代之后,可以得到一个相对较好的模型。是一种典型的boosting算法。

优点:

  1. adaboost是一种有很高精度的分类器。
  2. 可以使用各种方法构建子分类器,Adaboost算法提供的是框架。
  3. 当使用简单分类器时,计算出的结果是可以理解的,并且弱分类器的构造极其简单。
  4. 简单,不用做特征筛选。
  5. 不容易发生overfitting。

缺点:对outlier比较敏感

SVM支持向量机

高准确率,为避免过拟合提供了很好的理论保证,而且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,而随机森林却刚好避开了这些缺点,比较实用。

优点:

  1. 可以解决高维问题,即大型特征空间;
  2. 能够处理非线性特征的相互作用;
  3. 无需依赖整个数据;
  4. 可以提高泛化能力;

缺点:

  1. 当观测样本很多时,效率并不是很高;
  2. 对非线性问题没有通用解决方案,有时候很难找到一个合适的核函数;
  3. 对缺失数据敏感;

核函数的选择:

  1. 第一,如果样本数量小于特征数,那么就没必要选择非线性核,简单的使用线性核就可以了;
  2. 第二,如果样本数量大于特征数目,这时可以使用非线性核,将样本映射到更高维度,一般可以得到更好的结果;
  3. 第三,如果样本数目和特征数目相等,该情况可以使用非线性核,原理和第二种一样;

人工神经网络

优点:

  1. 分类的准确度高;
  2. 并行分布处理能力强,分布存储及学习能力强,
  3. 对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系;
  4. 具备联想记忆的功能。

缺点:

  1. 神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;
  2. 不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;
  3. 学习时间过长,甚至可能达不到学习的目的

K-Means

优点:

  1. 算法简单,容易实现 ;
  2. 对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k<<n。这个算法通常局部收敛。
  3. 算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,且簇与簇之间区别明显时,聚类效果较好。

缺点:

  1. 对数据类型要求较高,适合数值型数据;
  2. 可能收敛到局部最小值,在大规模数据上收敛较慢
  3. K值比较难以选取;
  4. 对初值的簇心值敏感,对于不同的初始值,可能会导致不同的聚类结果;
  5. 不适合于发现非凸面形状的簇,或者大小差别很大的簇。
  6. 对于”噪声”和孤立点数据敏感,少量的该类数据能够对平均值产生极大影响。

算法选择参考:

  1. 首当其冲应该选择的就是逻辑回归,如果它的效果不怎么样,那么可以将它的结果作为基准来参考,在基础上与其他算法进行比较;
  2. 然后试试决策树(随机森林)看看是否可以大幅度提升你的模型性能。即便最后你并没有把它当做为最终模型,你也可以使用随机森林来移除噪声变量,做特征选择;
  3. 如果特征的数量和观测样本特别多,那么当资源和时间充足时(这个前提很重要),使用SVM不失为一种选择。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值