题目
给你一个整数数组 nums ,返回 nums 中所有 等差子序列 的数目。
如果一个序列中 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该序列为等差序列。
例如,[1, 3, 5, 7, 9]、[7, 7, 7, 7] 和 [3, -1, -5, -9] 都是等差序列。
再例如,[1, 1, 2, 5, 7] 不是等差序列。
数组中的子序列是从数组中删除一些元素(也可能不删除)得到的一个序列。
例如,[2,5,10] 是 [1,2,1,2,4,1,5,10] 的一个子序列。
题目数据保证答案是一个 32-bit 整数。
示例1:
输入:nums = [2,4,6,8,10]
输出:7
解释:所有的等差子序列为:
[2,4,6]
[4,6,8]
[6,8,10]
[2,4,6,8]
[4,6,8,10]
[2,4,6,8,10]
[2,6,10]
示例2:
输入:nums = [7,7,7,7,7]
输出:16
解释:数组中的任意子序列都是等差子序列。
提示:
1 <= nums.length <= 1000
-2^31 <= nums[i] <= 2^31 - 1
思路
动态规划
这题是这个的进阶版:413. 等差数列划分,需要用动态规划来做,不然时间复杂度会很高导致超时。解题最重要的思路是:尾项和等差,这个数的等差序列数量 = 同样等差的上一个等差序列的尾项的数量 + 1;因为这个题中[2,4,6,8,10]
,[2,6,10]
也是子序列,给解题造成困难,所以需要用到hash表,建立尾项到等差的映射 再记录此映射的等差序列数量。
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& nums) {
int n = nums.size();
if(n <= 2) return 0;
int ans = 0;
vector<unordered_map<long long,int>>f(n);
for(int i = 0; i < n; i++) {
for(int j = 0; j < i; j++) {
long long d = 1LL * nums[i] - nums[j];
auto it = f[j].find(d);
int cnt = it == f[j].end() ? 0 : it->second;
ans += cnt;
f[i][d] += cnt + 1;
}
}
return ans;
}
};