322.零钱兑换
1.确定dp数组的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
2.确定递推公式
经典的题是求装满背包能装下的最大价值,这里求的是我要几张钱才能凑到我的总额,那就是装满这个背包需要几件物品
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
不要这个物品是dp[j],要这个物品的话就先把他的位置腾出来,然后我算上这个物品dp[j - coins[i]] + 1,因为求的最小值,就加个min
3.dp数组初始化
总金额为0所需钱币的个数一定是0,dp[0] = 0;
4.遍历顺序
题目求的是最小个数,那有顺序和没有顺序都可以,不影响钱币的最小个数。
所以先遍历物品还是先遍历背包没有影响。
5.(打印dp数组)
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount+1,INT_MAX);
dp[0]=0;
for(int i=0;i<coins.size();i++){
for(int j=coins[i];j<=amount;j++){
if(dp[j-coins[i]]!=INT_MAX)//加条件防止报错
dp[j]=min(dp[j-coins[i]]+1,dp[j]);//coins[i]是0的话可能会INT_MAX+1
}
}
if(dp[amount]==INT_MAX)return -1;
else return dp[amount];
}
};
279.完全平方数
题目链接:279. 完全平方数 - 力扣(LeetCode)
这道题跟上一道是一样的思路,就是把平方数当做物品,把要凑到的n当做背包。
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n+1,INT_MAX);
dp[0]=0;
for(int i=1;i<n;i++){
for(int j=i*i;j<=n;j++){
dp[j]=min(dp[j],dp[j-i*i]+1);
}
}
return dp[n];
}
};
139.单词拆分
感觉思路就先把题目中给的单词去重弄成集合,就是我们要装的物品,然后总的字符串长度的就相当于背包容量
遍历顺序是先遍历背包再遍历物品,因为单词的顺序是固定的,要用排列数,因为用排列数进行遍历的话是把每一个物品进行遍历跟我现在遍历到的字符串相等了之后才赋值为1
而先遍历物品的再遍历背包则是组合数。
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> wordset(wordDict.begin(), wordDict.end());//进行去重
vector<bool> dp(s.size() + 1, false);
dp[0] = true;
for (int i = 1; i <= s.size(); i++) {
for (int j = 0; j < i; j++) {
string word = s.substr(j, i - j);//从主串上截取长度
if (wordset.find(word) != wordset.end() && dp[j]) {
dp[i] = true;//当j在单词头,i在单词尾的字符串是已知单词且单词头的dp值为1
}
}
}
return dp[s.size()];
}
};