描述
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
思路
动态规划。和第62题类似的地图,但这次要求的是路径和最小的值是多少。和它同样的思路,dp数组表示的就是在第[i][j]
位置的最小路径和的值。要到达第[i][j]
个格子有两种方案,从第[i-1][j]
个格子或第[i][j-1]
个格子走过来。但哪种才是最小的呢,就需要从二者判断最小的值,再加上自己本身的路径数值,就是总的路径值了。列出状态转移方程:
dp[i][j] = min{dp[i-1][j] ,dp[i][j-1] } + val[i][j]
。
考虑初始值:对于最左边的一列格子,每个格子只能由其上方的格子走过来;对于最上面的一行格子,每个格子只能由其左边的格子走过来,所以左边一列格子和上边一列格子的的最短路径和是已知的。
解答
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));//建立二维数组
//初始值
dp[0][0] = grid[0][0];
for(int i=1; i<m; ++i) dp[i][0] = dp[i-1][0] + grid[i][0];//初始化最左1列
for(int j=1; j<n; ++j) dp[0][j] = dp[0][j-1] + grid[0][j];//初始化最上1行
//状态转移方程
for(int i=1; i<m; ++i)
for(int j=1; j<n; ++j){
dp[i][j] = min(dp[i][j-1], dp[i-1][j]) + grid[i][j];
}
return dp[m-1][n-1];
}
};