描述
给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
进阶:
- 尝试设计时间复杂度为 O(n)、空间复杂度为 O(1) 的算法解决此问题。
思路1:摩尔投票法
在看答案之前,没听说过还有“摩尔投票法”这个神奇的方法,原来题述强调众数个数大于总个数的一半是有原因的。摩尔投票法即:每次选一个数作为暂时的众数tmpNum,定义变量count计数,初始值为0,从当前数后面开始看,碰到相同的数就count+1,碰到不相同的就count-1,当count<0时tmpNum就换新的数,count重新置0,循环遍历每一个数,最终tmpNum就是众数。时间复杂度O(N),空间复杂度O(1)。
解答1
class Solution {
public:
int majorityElement(vector<int>& nums) {
int count = 0;
int tmpNum = nums[0];
for(int i = 1;i < nums.size() ;++ i){
if(count < 0) tmpNum = nums[i];
if(nums[i] == tmpNum) count ++;
else count --;
}
return tmpNum;
}
};
思路2
既然知道了众数数量一定大于n/2,那么将整个数组排序后,众数一定会出现在nums[n/2]的位置。
解答2
class Solution {
public:
int majorityElement(vector<int>& nums) {
sort(nums.begin(), nums.end());
return nums[nums.size() / 2];
}
};
思路3:分治
这道题用分治貌似挺麻烦的…