新博文地址:[leetcode]Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
跟Unique Paths几乎木有区别,遇到obstacleGrid[i][j] == 1的元素,即将path设为0即可。需要注意的是,在第一行和第一列,即obstacleGrid[i][0] == 1&& obstacleGrid[0][i] == 1后面的元素path全部置0
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid == null || obstacleGrid.length == 0){
return 0;
}
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] path = new int[m][n];
for(int i = 0; i < n; i++){
if(obstacleGrid[0][i] == 0){
path[0][i] = 1;
}else{
path[0][i] = 0;
break;
}
}
for(int i = 0; i < m; i++){
if(obstacleGrid[i][0] == 0){
path[i][0] = 1;
}else{
path[i][0] = 0;
break;
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if(obstacleGrid[i][j] == 0){
path[i][j] = path[i-1][j] + path[i][j-1];
}
}
}
return path[m-1][n-1];
}