题目
题目背景
在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量
有一天他醒来后发现自己居然到了联盟的主城暴风城
在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛
题目描述
在艾泽拉斯,有n个城市。编号为1,2,3,…,n。
城市之间有m条双向的公路,连接着两个城市,从某个城市到另一个城市,会遭到联盟的攻击,进而损失一定的血量。
每次经过一个城市,都会被收取一定的过路费(包括起点和终点)。路上并没有收费站。
假设1为暴风城,n为奥格瑞玛,而他的血量最多为b,出发时他的血量是满的。
歪嘴哦不希望花很多钱,他想知道,在可以到达奥格瑞玛的情况下,他所经过的所有城市中最多的一次收取的费用的最小值是多少。
输入输出格式
输入格式:
第一行3个正整数,n,m,b。分别表示有n个城市,m条公路,歪嘴哦的血量为b。
接下来有n行,每行1个正整数,fi。表示经过城市i,需要交费fi元。
再接下来有m行,每行3个正整数,ai,bi,ci(1<=ai,bi<=n)。表示城市ai和城市bi之间有一条公路,如果从城市ai到城市bi,或者从城市bi到城市ai,会损失ci的血量。
输出格式:
仅一个整数,表示歪嘴哦交费最多的一次的最小值。
如果他无法到达奥格瑞玛,输出AFK。
输入输出样例
输入样例#1:
4 4 8
8
5
6
10
2 1 2
2 4 1
1 3 4
3 4 3
输出样例#1:
10
说明
对于60%的数据,满足n≤200,m≤10000,b≤200
对于100%的数据,满足n≤10000,m≤50000,b≤1000000000
对于100%的数据,满足ci≤1000000000,fi≤1000000000,可能有两条边连接着相同的城市。
题解
看到最大值最小基本上就是二分了
写写画画后发现是一个最短路的图
用了一些很骚的离散化和玄学初始化
经测验发现了一些很妙的卡常操作
1.数组比结构体快很多很多很多
2.memset很快,但是很多的多余memset不如for
3.int比bool快
ac代码
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#define N 10010
#define M 50010
#define INF 2147483647
using namespace std;
typedef long long LL;
queue<int>Q;
struct Node{
int v,id;
}c[N];
struct Edge{
int p,q,o,n;
}b[M*2];
int n,m,a[N],bo[N],t,h[N],num,p,q,o,l,r,mid,ans,d[N],w;
bool v[N];
bool cmp(Node p,Node q){
return p.v<q.v;
}
void ljb(int p,int q,int o){
b[++num].n=h[p];
h[p]=num;
b[num].p=p;
b[num].q=q;
b[num].o=o;
}
bool Spfa(){
int x,y;
if(v[1]||v[n])return 0;
bo[1]=++t;
Q.push(1);
while(!Q.empty()){
x=Q.front();
Q.pop();
bo[x]=0;
for(int i=h[x];i!=0;i=b[i].n){
y=b[i].q;
if(!v[y]&&d[y]>d[x]+b[i].o){
if(bo[y]!=t){
Q.push(y);
bo[y]=t;
}
d[y]=d[x]+b[i].o;
}
}
}
// cout<<t<<'\n';
// for(int i=1;i<=n;i++)if(!v[i])cout<<i<<' '<<d[i]<<'\n';
return d[n]<=w;
}
int main(){
scanf("%d%d%d",&n,&m,&w);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
c[i].v=a[i];
c[i].id=i;
}
sort(c+1,c+n+1,cmp);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&p,&q,&o);
if(p==q)continue;
ljb(p,q,o);
ljb(q,p,o);
}
l=1,r=n,ans=-1;
for(int i=(l+r)/2+1;i<=r;i++)v[c[i].id]=1;
while(l<r){
mid=(l+r)/2;
// memset(d,63,sizeof(d));
for(int i=1;i<=mid;i++)d[c[i].id]=INF/2;
d[1]=0;
d[n]=INF/2;
if(Spfa()){
ans=c[mid].v;
r=mid;
for(int i=(l+r)/2+1;i<=r;i++)v[c[i].id]=1;
}
else {
l=mid+1;
for(int i=l;i<=(l+r)/2;i++)v[c[i].id]=0;
}
}
// memset(d,63,sizeof(d));
for(int i=1;i<=mid;i++)d[c[i].id]=INF/2;
d[1]=0;
d[n]=INF/2;
if(Spfa())ans=c[l].v;
if(ans==-1)printf("AFK\n");
else printf("%d\n",ans);
}