数值的整数次方(C++中等区)

数值的整数次方

题目:实现函数double Power(double base, int exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题。

示例 1:
输入: 2.00000, 10
输出: 1024.00000

示例 2:
输入: 2.10000, 3
输出: 9.26100

示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25

说明:
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1] 。


解题思路

题目说不用考虑大数问题,那么我们先尝试用for循环暴力求解,比如如下代码所示:

for(int i = 1; i < n; i ++)
	x *= x;

很显然这样做肯定是会超时的。
所以我们可以考虑比如我们计算 x^8,就是 x^2 * x^2 * x^2 * x^2,当我们计算出来 x^2 之后就可以只进行三次乘法就可以了,相对于之前的 7 次乘法,时间大大减少了。因此我们可以把 x^n 可以分解成若干个 x^i 的乘积

我们这里使用快速幂进行求解。我们看一下 n 的二进制形式一定是若干个 1 和 0 构成,比如 9 = 1001 = 12^3 + 02^2 + 02^1 + 12^0
在这里插入图片描述
同时我们可以看出来,每次乘的值都是前一个值的2倍,当 n 对应位为0时跳过。负数幂和正数幂相同,因为除以一个数就相当于乘这个数的倒数。
在这里插入图片描述

参考链接1:https://leetcode-cn.com/problems/shu-zhi-de-zheng-shu-ci-fang-lcof/solution/c-cheng-fa-kuai-su-mi-by-yizhe-shi/
链接2.https://leetcode-cn.com/problems/shu-zhi-de-zheng-shu-ci-fang-lcof/solution/mian-shi-ti-16-shu-zhi-de-zheng-shu-ci-fang-kuai-s/


代码展示

代码如下:

class Solution {
public:
    double myPow(double x, int n) {
        if(x==1||n==0) return 1;//特殊情况
        double res=1;
        long num=n;// 这里一定要转化成long,否则如果n=-2^31,-n就会越界.n 是 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1] 。
        if(n<0)
        {
            num=-num;
            x=1/x;
        }
        while(num)
        {
            // 快速幂方法(位运算): 假如n=9,9写成二进制就是1001
            // 当num & 1 = 1的时候,就执行乘方运算
            if(num&1) res*=x;
            x*=x;
            num>>=1;
        }
        return res;
    }
};
执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:5.7 MB, 在所有 C++ 提交中击败了76.43%的用户
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页