二叉搜索树的后序遍历序列
题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历结果。如果是则返回 true,否则返回 false。假设输入的数组的任意两个数字都互不相同。
参考以下这颗二叉搜索树:
示例 1:
输入: [1,6,3,2,5]
输出: false
示例 2:
输入: [1,3,2,6,5]
输出: true
提示:
数组长度 <= 1000
解题思路
如果这题说的是判断该数组是不是某二叉搜索树的中序遍历结果,那么这道题就非常简单了,因为二叉搜索树的中序遍历结果一定是有序的,我们只需要判断数组是否有序就行了。但这道题要判断的是不是某二叉搜索树的后序遍历结果,这样就有点难办了。
二叉搜索树的特点是左子树的值<根节点<右子树的值。而后续遍历的顺序是:左子节点→右子节点→根节点;
比如下面这棵二叉树,他的后续遍历是
[3,5,4,10,12,9]
我们知道后续遍历的最后一个数字一定是根节点,所以数组中最后一个数字9就是根节点,我们从前往后找到第一个比9大的数字10,那么10后面的[10,12](除了9)都是9的右子节点,10前面的[3,5,4]都是9的左子节点,后面的需要判断一下,如果有小于9的,说明不是二叉搜索树,直接返回false。然后再以递归的方式判断左右子树。
再来看一个,他的后续遍历是[3,5,13,10,12,9]
我们来根据数组拆分,第一个比9大的后面都是9的右子节点[13,10,12]。然后再拆分这个数组,12是根节点,第一个比12大的后面都是12的右子节点[13,10],但我们看到10是比12小的,他不可能是12的右子节点,所以我们能确定这棵树不是二叉搜索树。搞懂了上面的原理我们再来看下代码。
作者:sdwwld
链接:https://leetcode-cn.com/problems/er-cha-sou-suo-shu-de-hou-xu-bian-li-xu-lie-lcof/solution/di-gui-he-zhan-liang-chong-fang-shi-jie-jue-zui-ha/
代码展示
代码如下:
class Solution {
public:
bool verifyPostorder(vector<int>& postorder) {
int len=postorder.size();
return helper(postorder,0,len-1);
}
bool helper(vector<int>& postorder,int left,int right)
{
//如果left==right,就一个节点不需要判断了,如果left>right说明没有节点,
//也不用再看了,否则就要继续往下判断
if(left>=right) return true;
//因为数组中最后一个值postorder[right]是根节点,这里从左往右找出第一个比
//根节点大的值,他后面的都是根节点的右子节点(包含当前值,不包含最后一个值,
//因为最后一个是根节点),他前面的都是根节点的左子节点
int root=postorder[right];
int tem=left; //不能直接操作 left
while(postorder[tem]<root)
{
tem++;
}
int pos=tem;
//因为postorder[tem]前面的值都是比根节点root小的,
//我们还需要确定postorder[tem]后面的值都要比根节点root大,
//如果后面有比根节点小的直接返回false
while(pos<right)
{
if(postorder[pos++]<root)
return false;
}
//然后对左右子节点进行递归调用
return helper(postorder,left,tem-1) && helper(postorder,tem,right-1);
}
};
执行用时:0 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:7 MB, 在所有 C++ 提交中击败了38.04%的用户