分布式服务限流


单机版中我们了解到 AtomicInteger、RateLimiter、Semaphore 这几种解决方案,但它们也仅仅是单机的解决手段,在集群环境下就透心凉了,后面又讲述了 Nginx 的限流手段,可它又属于网关层面的策略之一,并不能解决所有问题。例如供短信接口,你无法保证消费方是否会做好限流控制,所以自己在应用层实现限流还是很有必要的。

本章目标

利用 自定义注解、Spring Aop、Redis Cache 实现分布式限流

自定义注解

@Target({ElementType.METHOD, ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Inherited
@Documented
public @interface Limit {
    /**
     * 资源的名字
     *
     * @return String
     */
    String name() default "";
 
    /**
     * 资源的key
     *
     * @return String
     */
    String key() default "";
 
    /**
     * Key的prefix
     *
     * @return String
     */
    String prefix() default "";
 
    /**
     * 给定的时间段
     * 单位秒
     *
     * @return int
     */
    int period();
 
    /**
     * 最多的访问限制次数
     *
     * @return int
     */
    int count();
 
    /**
     * 类型
     *
     * @return LimitType
     */
    LimitType limitType() default LimitType.CUSTOMER;
}
4. RedisConfig
@Configuration
public class RedisConfig {
 
    @Bean
    public RedisConnectionFactory redisConnectionFactory() {
        RedisStandaloneConfiguration redisStandaloneConfiguration = new RedisStandaloneConfiguration("127.0.0.1", 6379);
        return new JedisConnectionFactory(redisStandaloneConfiguration);
    }
 
    @Bean
    public RedisTemplate<String, Serializable> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
        RedisTemplate<String, Serializable> template = new RedisTemplate<>();
        template.setConnectionFactory(redisConnectionFactory);
        template.setKeySerializer(new StringRedisSerializer());
        template.setValueSerializer(new GenericJackson2JsonRedisSerializer());
        return template;
    }
 
}

切面LimitInterceptor

Redis是线程安全的,我们利用它的特性可以实现分布式锁、分布式限流等组件,之前分布式服务防重复提交的那篇文章就使用官方API setIfAbsent实现了一个分布式锁,来实现分布式服务防重复提交。对于分布式限流而言,分布式限流不能像防重复提交的分布式锁的逻辑,完全依赖于redis expireTime,因为放重复提交在指定时间内只允许一次有效访问,但是分布式服务限流允许多次有效访问。官方未提供相应的API,但是却提供了支持Lua脚本的功能,我们可以通过编写Lua脚本实现自己的API,同时他是满足原子性的。

@Aspect
@Configuration
@Slf4j
@RequiredArgsConstructor
public class LimitInterceptor {
    private final RedisTemplate<String, Serializable> limitRedisTemplate;
 
    @Around("execution(public * *(..)) && @annotation(com.zhuoli.service.springboot.distributed.current.limit.annotation.Limit)")
    public Object interceptor(ProceedingJoinPoint pjp) {
        MethodSignature signature = (MethodSignature) pjp.getSignature();
        Method method = signature.getMethod();
        Limit limitAnnotation = method.getAnnotation(Limit.class);
        LimitType limitType = limitAnnotation.limitType();
        String name = limitAnnotation.name();
        String key;
        int limitPeriod = limitAnnotation.period();
        int limitCount = limitAnnotation.count();
        switch (limitType) {
            case IP:
                key = getIpAddress();
                break;
            case CUSTOMER:
                key = limitAnnotation.key();
                break;
            default:
                key = method.getName().toUpperCase();
        }
        ImmutableList<String> keys = ImmutableList.of(Joiner.on("").join(limitAnnotation.prefix(), key));
        try {
            String luaScript = buildLuaScript();
            RedisScript<Number> redisScript = new DefaultRedisScript<>(luaScript, Number.class);
            Number count = limitRedisTemplate.execute(redisScript, keys, limitCount, limitPeriod);
            log.info("Access try count is {} for name={} and key = {}", count, name, key);
            if (count != null && count.intValue() <= limitCount) {
                return pjp.proceed();
            } else {
                throw new RuntimeException("Request too frequently, please try later");
            }
        } catch (Throwable e) {
            if (e instanceof RuntimeException) {
                throw new RuntimeException(e.getLocalizedMessage());
            }
            throw new RuntimeException("server exception");
        }
    }
 
    /**
     * 限流 脚本
     *
     * @return lua脚本
     */
    public String buildLuaScript() {
        StringBuilder lua = new StringBuilder();
        lua.append("local c");
        lua.append("\nc = redis.call('get',KEYS[1])");
        // 调用超过最大值,则直接返回
        lua.append("\nif c and tonumber(c) > tonumber(ARGV[1]) then");
        lua.append("\nreturn c;");
        lua.append("\nend");
        // 执行计算器自加
        lua.append("\nc = redis.call('incr',KEYS[1])");
        lua.append("\nif tonumber(c) == 1 then");
        // 从第一次调用开始限流,设置对应键值的过期
        lua.append("\nredis.call('expire',KEYS[1],ARGV[2])");
        lua.append("\nend");
        lua.append("\nreturn c;");
        return lua.toString();
    }
 
    private static final String UNKNOWN = "unknown";
 
    public String getIpAddress() {
        HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest();
        String ip = request.getHeader("x-forwarded-for");
        if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
            ip = request.getHeader("Proxy-Client-IP");
        }
        if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
            ip = request.getHeader("WL-Proxy-Client-IP");
        }
        if (ip == null || ip.length() == 0 || UNKNOWN.equalsIgnoreCase(ip)) {
            ip = request.getRemoteAddr();
        }
        return ip;
    }
}

特殊讲一下这段lua脚本:

local c
c = redis.call('get',KEYS[1])
if c and tonumber(c) > tonumber(ARGV[1]) then
        return c;
end
 
c = redis.call('incr',KEYS[1])
if tonumber(c) == 1 then
        redis.call('expire',KEYS[1],ARGV[2])
end
return c;  

逻辑很简单,先获取key已执行服务次数,如果已大于允许最大值直接返回。否则redis key对应的value加1,并且如果是第一次设置key,对key设置超时时间。

注解使用

@RestController
@RequestMapping("/user")
@AllArgsConstructor
public class UserController {
 
    private UserControllerService userControllerService;
 
    @Limit(key = "test", period = 100, count = 10)
    @RequestMapping(value = "/get_user", method = RequestMethod.POST)
    public ResponseEntity getUserById(@RequestParam Long id){
        return ResponseEntity.status(HttpStatus.OK).body(userControllerService.getUserById(id));
    }
}

设置100S内只允许访问10次

参考:
https://blog.csdn.net/weixin_41835612/article/details/83774962
http://blog.battcn.com/2018/08/08/springboot/v2-cache-redislimter/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值