Numpy中的行向量与列向量

首先要说明的是,无论是行向量还是列向量,shape都是二维的,不过其中有一维是1,一个list既不是行向量也不是列向量。

行向量
import numpy as np
b=np.array([1,2,3]).reshape((1,-1))
print(b,b.shape)
'''
	结果:
	(array([[1, 2, 3]]), (1, 3))
'''

# 或者下面这种方法
b=np.array([[1,2,3]])	#两层'[]'
print(b,b.shape) 

'''
	结果
	(array([[1, 2, 3]]), (1, 3))
'''
列向量
import numpy as np
a=np.array([1,2,3]).reshape((-1,1))
print(a,a.shape)

'''
结果:
(array([[1],
       [2],
       [3]]), (3, 1))

'''

a=np.array([[1,2,3]]).T
print(a,a.shape)

'''
(array([[1],
       [2],
       [3]]), (3, 1))

'''

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值