P8218 【深进1.例1】求区间和

思路

方法:利用前缀和得到的数据进行简单运算

前缀和的计算:用一个一维数组存储,sum[i]就是a[i]的前缀和。sum[i]=a[i]+sum[i-1].

把r[i]的前缀和与l[i]-1的前缀和相减,得到结果并输出。

代码 

#include<bits/stdc++.h>
using namespace std;
int n,sum[100005],m,l[100005],r[100005];
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		int a;
		cin>>a;
		sum[i]=a+sum[i-1];
	}
	cin>>m;
	for(int i=1;i<=m;i++) cin>>l[i]>>r[i];
	for(int i=1;i<=m;i++) cout<<sum[r[i]]-sum[l[i]-1]<<endl;
	return 0;
}

1~n区间的最大异或和可以使用类似于一段区间最大异或和的方法。具体步骤如下: 1. 将1~n区间内的所有数以二进制形式插入到字典树中。 2. 对于每个数,从高位到低位依次匹配字典树上的节点,如果当前位为1,就往字典树的右子树走,否则就往左子树走。匹配完整个二进制数后,我们可以得到一个最大的异或值。 3. 对于1~n区间,我们可以将其中的数看作一个二进制数,然后从高位到低位依次匹配字典树上的节点,得到最大的异或和。 时间复杂度为O(nlogC),其中n为区间长度,C为数的范围。以下是1~n区间的最大异或和的C++代码: ```c++ #include <iostream> using namespace std; const int MAXN = 100010; const int MAXBITS = 30; struct TrieNode { int cnt; int children[2]; } trie[MAXN * MAXBITS]; int root, node_cnt; void insert(int x) { int p = root; for (int i = MAXBITS - 1; i >= 0; i--) { int idx = (x >> i) & 1; if (!trie[p].children[idx]) { trie[p].children[idx] = ++node_cnt; } p = trie[p].children[idx]; trie[p].cnt++; } } int query(int x) { int p = root, res = 0; for (int i = MAXBITS - 1; i >= 0; i--) { int idx = (x >> i) & 1; if (trie[trie[p].children[idx ^ 1]].cnt > 0) { res += (1 << i); p = trie[p].children[idx ^ 1]; } else { p = trie[p].children[idx]; } } return res; } int main() { int n; cin >> n; root = 1; node_cnt = 1; for (int i = 1; i <= n; i++) { insert(i); } int ans = query(n); cout << ans << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值