二叉树(C语言)


树可以使用链表也可以用数组实现
数组的实现通过下表与树的节点的序列对应,但是该方不够灵活,而且在C语言中,数组不进行下界检查,而且不能进行动态增长。
在比较通用的实现方式使用的是树链表实现。
对于大量的数据输入,链表的线性范文时间太慢,不宜使用,树的大部分操作的运行时间平均为O(log N)
具体参照源码:
http://download.csdn.net/detail/mcu_tian/9540527
二叉树
二叉树是最简单、应用最广泛的树,通过构造表达式树,对表达式树的一些操作作为实例。

将计算表达式(只有“*”、“+”操作符,操作数用字母代替,假设输入都是合法的,不会对表达式合法性进行检查)转换为后缀表达式,通过栈的方式进行转换(参考):
http://blog.csdn.net/mcu_tian/article/details/51493081

二叉树的节点定义如下
typedef char TreeElementType;
struct TreeNode
{
    TreeElementType element;
    struct TreeNode *right;
    struct TreeNode *left;
};
typedef struct TreeNode *nodePtr;
typedef struct TreeNode *tree;
typedef struct TreeNode node;

构建表达式树:
tree CreateExpTree(char* expStr) //输入后缀的表达式字符串,并且返回表达式树根节点指针
{
    int nstr;
    tree tmpTree;
    nodePtr tmpPtr;
    nodePtr *ptrArray;

    char ctmp;
    int ni=0;
    int i = 0;//指针数组的位置标记

    nstr = strlen(expStr);  
    ptrArray = (nodePtr *)malloc(nstr*sizeof(nodePtr));//节点指针数组
/*
 * 构建表达式树,逐字符的分析表达式字符串
 * 该表达式树的构建使用的是类似于堆得方法
 * 当字符为操作数的时候(即字母),将标记位置(i)对应的指针数组元素指向该节点,并将该节点的左右孩子节点指针设置为NULL
 * 当字符为操作符的时候(即‘+’或‘*’),将该节点的左右孩纸(left、right)设置为指针数组对应标记位置(i)的前两个元素。
 * 指针数组的标记位(i)减2,再将位置标记对应的数组元素赋值为改节点的地址
 * 在迭代遍历完成之后,返回树的根节点指针,即为节点指针数组的首元素(只有表达式输入没有问题,那么最后i一定为0)
 */
    for(;ni<nstr;++ni)  
    {
        ctmp = expStr[ni]; 
        if(islower(ctmp)||isupper(ctmp))
        {
            tmpPtr = (nodePtr)malloc(sizeof(node));
            tmpPtr->left = NULL;
            tmpPtr->right = NULL;
            tmpPtr->element = ctmp;
            ptrArray[i]=tmpPtr;
            ++i;
        }
        else
        {
            tmpPtr = (nodePtr)malloc(sizeof(node));
            tmpPtr->right = ptrArray[--i];
            tmpPtr->left = ptrArray[--i];
            tmpPtr->element = ctmp;

            ptrArray[i] = tmpPtr;
            ++i;
        }
    }
    tmpTree = ptrArray[0];
    free(ptrArray);
    return tmpTree;
}
二叉树的遍历
在构建好树之后,那么接下来就是对树进行遍历了
树的遍历有前序遍历、中序遍历、后序遍历
其中前中后对应的是根节点
前序遍历顺序为    根节点->左孩子节点->右孩子节点
中序遍历顺序为    左孩子节点->根节点->右孩子节点
后序遍历顺序为    左孩子节点->右孩子节点->根节点

树的遍历是通过递归实现的:
前序遍历:
int PreorderTraversal(tree btree,TreeElementType *result) //输入遍历树的根节点指针,然后将遍历结果输入到reuslt指向的数组中,返回遍历节点的数量
{
    static unsigned int i = 0;
    if(btree == NULL)
    {
        return i;
    }
    result[i] = btree->element;
    ++i;
    PreorderTraversal(btree->left,result);
    PreorderTraversal(btree->right,result);
    return i;
}
中序遍历:
int InorderTraversal(tree btree,TreeElementType *result)//同上
{
    static unsigned int i;
    if(btree == NULL)
    {
        return i;
    }
    InorderTraversal(btree->left,result);
    result[i] = btree->element;
    ++i;
    InorderTraversal(btree->right,result);
    return i;
}
后序遍历:二叉树的摧毁通过后序遍历,逐个进行节点的释放
int PostorderTraversal(tree btree,TreeElementType *result)//同上
{
    static unsigned int i;
    if(btree == NULL)
    {
        return i;
    }
    PostorderTraversal(btree->left,result);
    PostorderTraversal(btree->right,result);
    result[i] = btree->element;
    ++i;
    return i;
}

计算表达式为:
(a+b*c)+((d*e+f)*g)
构建表达式树后,运行结果如下图(分别前序遍历、中序遍历、后序遍历):


关于 Python 中的 `self` 关键字: 在 Python 中,`self` 是一个约定俗成的关键字,通常作为类方法的第一个参数出现。它表示类的实例对象本身,可以用来访问实例变量和方法。在 Python 中,不像其他语言中使用 `this` 或 `self` 关键字一样强制要求使用,但是为了代码的可读性和规范性,建议在类方法中使用 `self`。 关于 Python 实现中序遍历表达式二叉树,前缀、中缀、后缀表达式生成表达式二叉树: 以下是一个示例代码,实现了中序遍历表达式二叉树,前缀、中缀、后缀表达式生成表达式二叉树的功能: ```python class TreeNode: def __init__(self, val): self.val = val self.left = None self.right = None class ExpressionTree: def __init__(self): self.root = None # 中序遍历表达式二叉树 def inorder_traversal(self, node): if node.left: self.inorder_traversal(node.left) print(node.val, end=' ') if node.right: self.inorder_traversal(node.right) # 前缀表达式生成表达式二叉树 def build_from_prefix(self, expression): stack = [] for i in range(len(expression) - 1, -1, -1): if expression[i].isdigit(): node = TreeNode(expression[i]) stack.append(node) else: node = TreeNode(expression[i]) node.left = stack.pop() node.right = stack.pop() stack.append(node) self.root = stack.pop() # 中缀表达式生成表达式二叉树 def build_from_infix(self, expression): stack = [] i = 0 while i < len(expression): if expression[i].isdigit(): j = i while j < len(expression) and expression[j].isdigit(): j += 1 node = TreeNode(expression[i:j]) stack.append(node) i = j elif expression[i] == '(': stack.append('(') i += 1 elif expression[i] == ')': while stack[-1] != '(': right = stack.pop() op = stack.pop() left = stack.pop() node = TreeNode(op) node.left = left node.right = right stack.append(node) stack.pop() # 弹出左括号 i += 1 else: while stack and stack[-1] != '(' and self.precedence(stack[-1]) >= self.precedence(expression[i]): right = stack.pop() op = stack.pop() left = stack.pop() node = TreeNode(op) node.left = left node.right = right stack.append(node) stack.append(expression[i]) i += 1 while len(stack) > 1: right = stack.pop() op = stack.pop() left = stack.pop() node = TreeNode(op) node.left = left node.right = right stack.append(node) self.root = stack.pop() # 后缀表达式生成表达式二叉树 def build_from_postfix(self, expression): stack = [] for c in expression: if c.isdigit(): node = TreeNode(c) stack.append(node) else: right = stack.pop() left = stack.pop() node = TreeNode(c) node.left = left node.right = right stack.append(node) self.root = stack.pop() # 返回操作符优先级 def precedence(self, op): if op == '+' or op == '-': return 1 elif op == '*' or op == '/': return 2 else: return 0 ``` 其中,`TreeNode` 表示二叉树的节点,`ExpressionTree` 表示表达式二叉树。`build_from_prefix`、`build_from_infix`、`build_from_postfix` 分别表示通过前缀、中缀、后缀表达式生成表达式二叉树的方法。`inorder_traversal` 表示中序遍历表达式二叉树的方法。`precedence` 表示返回操作符优先级的方法。 示例代码中使用了栈来辅助实现表达式的构建,具体的实现方法可以参考代码中的注释。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值