树可以使用链表也可以用数组实现
数组的实现通过下表与树的节点的序列对应,但是该方不够灵活,而且在C语言中,数组不进行下界检查,而且不能进行动态增长。
在比较通用的实现方式使用的是树链表实现。
对于大量的数据输入,链表的线性范文时间太慢,不宜使用,树的大部分操作的运行时间平均为O(log N)
具体参照源码:
http://download.csdn.net/detail/mcu_tian/9540527
二叉树
二叉树是最简单、应用最广泛的树,通过构造表达式树,对表达式树的一些操作作为实例。
将计算表达式(只有“*”、“+”操作符,操作数用字母代替,假设输入都是合法的,不会对表达式合法性进行检查)转换为后缀表达式,通过栈的方式进行转换(参考):
http://blog.csdn.net/mcu_tian/article/details/51493081
二叉树的节点定义如下
typedef char TreeElementType;
struct TreeNode
{
TreeElementType element;
struct TreeNode *right;
struct TreeNode *left;
};
typedef struct TreeNode *nodePtr;
typedef struct TreeNode *tree;
typedef struct TreeNode node;
构建表达式树:
tree CreateExpTree(char* expStr) //输入后缀的表达式字符串,并且返回表达式树根节点指针
{
int nstr;
tree tmpTree;
nodePtr tmpPtr;
nodePtr *ptrArray;
char ctmp;
int ni=0;
int i = 0;//指针数组的位置标记
nstr = strlen(expStr);
ptrArray = (nodePtr *)malloc(nstr*sizeof(nodePtr));//节点指针数组
/*
* 构建表达式树,逐字符的分析表达式字符串
* 该表达式树的构建使用的是类似于堆得方法
* 当字符为操作数的时候(即字母),将标记位置(i)对应的指针数组元素指向该节点,并将该节点的左右孩子节点指针设置为NULL
* 当字符为操作符的时候(即‘+’或‘*’),将该节点的左右孩纸(left、right)设置为指针数组对应标记位置(i)的前两个元素。
* 指针数组的标记位(i)减2,再将位置标记对应的数组元素赋值为改节点的地址
* 在迭代遍历完成之后,返回树的根节点指针,即为节点指针数组的首元素(只有表达式输入没有问题,那么最后i一定为0)
*/
for(;ni<nstr;++ni)
{
ctmp = expStr[ni];
if(islower(ctmp)||isupper(ctmp))
{
tmpPtr = (nodePtr)malloc(sizeof(node));
tmpPtr->left = NULL;
tmpPtr->right = NULL;
tmpPtr->element = ctmp;
ptrArray[i]=tmpPtr;
++i;
}
else
{
tmpPtr = (nodePtr)malloc(sizeof(node));
tmpPtr->right = ptrArray[--i];
tmpPtr->left = ptrArray[--i];
tmpPtr->element = ctmp;
ptrArray[i] = tmpPtr;
++i;
}
}
tmpTree = ptrArray[0];
free(ptrArray);
return tmpTree;
}
二叉树的遍历
在构建好树之后,那么接下来就是对树进行遍历了
树的遍历有前序遍历、中序遍历、后序遍历
其中前中后对应的是根节点
前序遍历顺序为 根节点->左孩子节点->右孩子节点
中序遍历顺序为 左孩子节点->根节点->右孩子节点
后序遍历顺序为 左孩子节点->右孩子节点->根节点
树的遍历是通过递归实现的:
前序遍历:
int PreorderTraversal(tree btree,TreeElementType *result) //输入遍历树的根节点指针,然后将遍历结果输入到reuslt指向的数组中,返回遍历节点的数量
{
static unsigned int i = 0;
if(btree == NULL)
{
return i;
}
result[i] = btree->element;
++i;
PreorderTraversal(btree->left,result);
PreorderTraversal(btree->right,result);
return i;
}
中序遍历:
int InorderTraversal(tree btree,TreeElementType *result)//同上
{
static unsigned int i;
if(btree == NULL)
{
return i;
}
InorderTraversal(btree->left,result);
result[i] = btree->element;
++i;
InorderTraversal(btree->right,result);
return i;
}
后序遍历:二叉树的摧毁通过后序遍历,逐个进行节点的释放
int PostorderTraversal(tree btree,TreeElementType *result)//同上
{
static unsigned int i;
if(btree == NULL)
{
return i;
}
PostorderTraversal(btree->left,result);
PostorderTraversal(btree->right,result);
result[i] = btree->element;
++i;
return i;
}
计算表达式为:
(a+b*c)+((d*e+f)*g)
构建表达式树后,运行结果如下图(分别前序遍历、中序遍历、后序遍历):