自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

翻译 CamVox: A Low-cost and Accurate Lidar-assisted Visual SLAM System | CamVox:一个低成本、高精度的激光辅助视觉SLAM系统

将激光雷达结合在基于相机的同时定位和建图(SLAM)是提高整体精度的有效方法,特别是在大规模的户外场景下。低成本激光雷达的最近发展。使我们能够以更低的预算和更高的性能来探索这种SLAM系统。在本文中,我们通过探索Livox激光雷达的独特特征,将Livox激光雷达转化为视觉SLAM(ORB-SLAM2)来提出CamVox。基于激光雷达的非重复性质,我们提出了一种可以在不受控制的场景中工作的自动激光雷达-照相机校准方法。长深度检测范围也有利于更有效的映射。在同一数据集上对CamVox与视觉SLAM(VINS-m

2021-07-19 13:33:00 807 1

翻译 论文简读 | 城市自动驾驶应用的概率语义地图

近年来统计学和计算机能力的进步使自动驾驶技术以更快的速度发展并得到广泛应用。虽然很多介绍的许多地图体系结构都能够在高度动态的环境下运行,但由于与高精(HD)地图相关的可扩展性成本,其中许多体系结构都局限于较小规模的部署,并且需要经常维护。高精地图为自动驾驶汽车安全驾驶提供了关键信息。然而,创建高精地图的传统方法涉及繁琐的手动标记物体。为了解决这一问题,我们将融合图像和与构建点云图信息,对道路、人行道、人行横道和车道等静态地标进行自动和准确的标记。该方法对二维图像进行语义分割,将语义标签与点云地图相关联,以准

2021-01-05 01:24:27 433

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除