前言
计算机视觉系列之学习笔记主要是本人进行学习人工智能(计算机视觉方向)的代码整理。本系列所有代码是用python3编写,在平台Anaconda中运行实现,在使用代码时,默认你已经安装相关的python库,这方面不做多余的说明。本系列所涉及的所有代码和资料可在我的github上下载到,gitbub地址:https://github.com/mcyJacky/DeepLearning-CV,如有问题,欢迎指出。
一、构建非线性模型数据
下面通过随机构造一些噪声点来构建线性模型数据:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 生成200个随机点
# np.newaxis为数组增加一个轴
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
# 噪声点
noise = np.random.normal(0,0.02,x_data.shape)
# 模型值
y_data = np.square(x_data) + noise
# 显示
plt.scatter(x_data, y_data)
plt.show()
模型结果显示如下图1.1所示:
二、构建非线性回归线
下面通过tensorflow进行数据训练来构建以上非线性模型数据的非线性回归线:
# 定义两个placeholder
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])
# 定义神经网络结构:1-30-1
w1 = tf.Variable(tf.random_normal([1,30]))
b1 = tf.Variable(tf.zeros([30]))
wx_plus_b_1 = tf.matmul(x,w1) + b1
l1 = tf.nn.tanh(wx_plus_b_1) # 使用激活函数
w2 = tf.Variable(tf.random_normal([30,1]))
b2 = tf.Variable(tf.zeros([1]))
wx_plus_b_2 = tf.matmul(l1,w2) + b2
prediction = tf.nn.tanh(wx_plus_b_2)
# 二次代价函数
loss = tf.losses.mean_squared_error(y,prediction)
# 使用梯度下降法最小化loss
train = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 定义会话
with tf.Session() as sess:
# 变量初始化
sess.run(tf.global_variables_initializer())
# 训练数据
for _ in range(3000):
sess.run(train,feed_dict={x:x_data,y:y_data})
# 获得预测值
prediction_value = sess.run(prediction,feed_dict={x:x_data})
# 画图
plt.scatter(x_data, y_data)
plt.plot(x_data, prediction_value, 'r-', lw=5)
plt.show()
模型训练结果显示如下图2.1所示,由线性回归结果红色线可直观看出,使用简单神经网络训练后非线性回归拟合效果较好。
【参考】:
1. 城市数据团课程《AI工程师》计算机视觉方向
2. deeplearning.ai 吴恩达《深度学习工程师》
3. 《机器学习》作者:周志华
4. 《深度学习》作者:Ian Goodfellow
转载声明:
版权声明:非商用自由转载-保持署名-注明出处
署名 :mcyJacky
文章出处:https://blog.csdn.net/mcyJacky