前言
计算机视觉系列之学习笔记主要是本人进行学习人工智能(计算机视觉方向)的代码整理。本系列所有代码是用python3编写,在平台Anaconda中运行实现,在使用代码时,默认你已经安装相关的python库,这方面不做多余的说明。本系列所涉及的所有代码和资料可在我的github上下载到,gitbub地址:https://github.com/mcyJacky/DeepLearning-CV,如有问题,欢迎指出。
一、构建非线性模型数据
下面通过随机构造一些噪声点来构建线性模型数据:
import keras
import numpy as np
import matplotlib.pyplot as plt
# Sequential按顺序构成的模型
from keras.models import Sequential
# Dense全连接层
from keras.layers import Dense, Activation
# 优化器:随机梯度下降
from keras.optimizers import SGD
# 生成非线性数据模型
x_data = np.linspace(-0.5,0.5,200)
noise = np.random.normal(0, 0.02, x_data.shape)
y_data = np.square(x_data) + noise
# 显示随机点
plt.scatter(x_data, y_data)
plt.show()
模型结果显示如下图1.1所示:
二、构建非线性回归线
下面通过keras进行数据训练来构建以上非线性模型数据的非线性回归线:
# 构建一个顺序模型
model = Sequential()
# 在模型中添加一个全连接层
# 神经网络结构:1-10-1,即输入层为1个神经元,隐藏层10个神经元,输出层1个神经元。
# 激活函数加法1
model.add(Dense(units=10, input_dim=1))
model.add(Activation('tanh'))
model.add(Dense(units=1))
model.add(Activation('tanh'))
# 激活函数加法2
# model.add(Dense(units=10, input_dim=1, activation='relu'))
# model.add(Dense(units=1, activation='relu'))
# 定义优化算法
sgd = SGD(lr=0.3)
# sgd: Stochastic gradient descent,随机梯度下降法
# mse: Mean Squared Error, 均方误差
model.compile(optimizer=sgd, loss='mse')
# 进行训练
for step in range(3001):
# 每次训练一个批次
cost = model.train_on_batch(x_data, y_data)
# 每500个batch打印一次cost值
if step % 500 == 0:
print('cost: ', cost)
# 打印权值和偏置值
W, b = model.layers[0].get_weights()
print('W:', W, ' b: ', b)
print(len(model.layers))
# 把x_data输入网络中,得到预测值y_pred
y_pred = model.predict(x_data)
# 显示随机点
plt.scatter(x_data, y_data)
# 显示预测结果
plt.plot(x_data, y_pred, 'r-', lw=3)
plt.show()
# 打印输出结果:
# cost: 0.11566254
# cost: 0.0059284647
# cost: 0.005420627
# cost: 0.0039270753
# cost: 0.0012707997
# cost: 0.0023045745
# cost: 0.00043227203
# W: [[-0.8097365 0.873398 0.46838143 0.16048421 0.23931012 0.37379673
# 1.6485813 0.02880438 0.05999178 0.2506774 ]] b: [-0.3891211 -0.27747348 -0.0352951 0.1672752 0.04472595 0.08710503
# 0.730751 0.21009925 -0.1056181 0.17212172]
# 4
模型训练结果显示如下图2.1所示,由线性回归结果红色线可直观看出,使用简单神经网络训练后非线性回归拟合效果较好。
【参考】:
1. 城市数据团课程《AI工程师》计算机视觉方向
2. deeplearning.ai 吴恩达《深度学习工程师》
3. 《机器学习》作者:周志华
4. 《深度学习》作者:Ian Goodfellow
转载声明:
版权声明:非商用自由转载-保持署名-注明出处
署名 :mcyJacky
文章出处:https://blog.csdn.net/mcyJacky