Fs=1000; %Sampling Frequency
time = 0:(1/Fs):1; %time vector
% Data vector
x = cos(2*pi*60*time)+sin(2*pi*120*time)+randn(size(time));
d=fdesign.lowpass('N,F3dB',5,200,Fs); %lowpass filter specification object
% Invoke Butterworth design method
Hd=design(d,'butter');
y=filter(Hd,x);
Wn = (2*200)/1000; %Convert 3-dB frequency
% to normalized frequency: 0.4*pi rad/sample
[B,A] = butter(5,Wn,'low');
y = filter(B,A,x);
滤波函数
* filter:利用递归滤波器(IIR)或非递归滤波器(FIR)对数据进行数字滤波;
* fftfilt:利用基于FFT的重叠相加法对数据进行滤波,只适用于非递归滤波器(FIR);
* filter2:二维FIR数字滤波;
* filtfilt:零相位滤波(IIR与FIR均可)。
滤波器特性分析
* 脉冲响应Impz
* 频率响应freqz与freqs
* 幅频和相频abs与angle、unwrap
* 群延迟grpdelay
* 零极点分析zplane
IIR数字滤波器设计
模拟低通滤波器设计
* 巴特沃斯低通滤波器设计buttap
* 切比雪夫低通滤波器设计cheb1ap与cheb2ap
* 椭圆低通滤波器设计ellipap
模拟滤波器最小阶数的选择
* 巴特沃斯滤波器Buttord
* 切比雪夫1型滤波器Cheb1ord
* 切比雪夫2型滤波器Cheb2ord
* 椭圆滤波器Ellipord
模拟高通、带通、带阻滤波器设计
* 模拟低通到模拟低通lp2lp
* 模拟低通到模拟高通lp2hp
* 模拟低通到模拟带通lp2bp
* 模拟低通到模拟带阻lp2bs
IIR实频变换
* IIR实频率移位变换iirshift
* 实低通到实低通的频率移位变换iirlp2lp
* 实低通到实高通的频率移位变换iirlp2hp
* 实低通到实带通的频率移位变换iirlp2bp
* 实低通到实带阻的频率移位变换iirlp2bs
* 实低通到实多带的频率移位变换iirlp2mb
* 实低通到实多点的频率移位变换iirlp2xn
IIR复频变换
* IIR复频率移位变换iirshiftc
* 实低通到复带通的频率移位变换iirlp2bpc
* 实低通到复带阻的频率移位变换iirlp2bsc
* 实低通到复多带的频率移位变换iirlp2mbc
* 实低通到复多点的频率移位变换iirlp2xnc
* 复带通到复带通的频率移位变换iirbpc2bpc
模拟滤波器的离散化
* 脉冲响应不变法impinvar
* 双线性变换法bilinear
IIR滤波器的直接设计
* 贝塞尔模拟滤波器Besself
* 巴特沃斯滤波器Butter
* 切比雪夫1型滤波器Cheby1
* 切比雪夫2型滤波器Cheby2
* 椭圆型滤波器Ellip
* 递归数字滤波器Yulewalk
* 一般数字滤波器Maxplat
小结
滤波方法 | 描述 | 滤波器函数 |
模拟原型 | 使用连续域的经典低通原型滤波器模型零极点,再通过频率变换和滤波器离散化得到数字滤波器 | 直接滤波器设计函数: besself,butter,cheby1, cheby2, ellip 阶数预测函数: buttord, cheb1ord, cheb2ord, ellipord 低通模拟原型函数: besselap, buttap, cheb1ap, cheb2ap, ellipap 频率变换函数: lp2bp, lp2bs, lp2hp, lp2lp 滤波器离散函数: bilinear, impinvar |
直接设计 | 通过逼近线性幅值响应直接在离散域设计数字滤波器 | yulewalk |
广义巴特沃斯滤波器设计 | 设计零点多于极点的低通巴特沃斯滤波器 | maxflat |
参数建模 | 通过逼近给定的时域或频域响应得到数字滤波器 | 时域建模函数: lpc, prony, stmcb 频域建模函数: invfreqs, invfreqz |
FIR数字滤波器设计
窗函数法
* 设计具有标准频率响应的FIR滤波器Fir1
* 设计具有任意频率响应的FIR滤波器Fir2(如多带通滤波器)
切比雪夫逼近法
* 最佳一致逼近法设计firpm
* 任意响应法cfirpm
约束最小二乘法
* 设计线性相位滤波器firls
* 设计多带线性相位滤波器fircls
* 设计低通或高通线性相位滤波器fircls1
设计Savitzky-Golay平滑滤波器sgolay
小结
* 准确线性相位
* 总是稳定的
* 设计方法是线性的
* 可以有效的在硬件上实现
* 滤波初始过渡阶段持续时间有限
滤波器设计方法 | 描述 | 滤波器函数 |
窗函数设计法 | 对傅里叶逆变换加窗 | fir1, fir2, kaiserord |
多带逼近 | 最小二乘法一致逼近多带频率响应 | firls, firpm, firpmord |
约束最小二乘法 | 在最大误差的约束下最小化误差平方和 | fircls, fircls1 |
任意响应 | 任意响应设计,包括非线性相位、复频域滤波器 | cfirpm |
Raised Cosine | 平滑正弦过渡的低通响应 | firrcos |
工具箱GUI
Sptool信号分析工具箱GUI
Wintool窗函数查看工具箱GUI