目标检测
文章平均质量分 54
博观而约取,厚积而薄发
这个作者很懒,什么都没留下…
展开
-
[runtime.cpp::parsePlan::314] Error Code 1: Serialization (Serialization assertion plan->header.magi
主要的原因是导出engine的TensorRT版本和推理的TensorRT版本不一致。要求cudnn是8x。原创 2024-10-16 10:43:44 · 174 阅读 · 0 评论 -
标注:ppocr转YOLOv5
【代码】标注:ppocr转YOLOv5。原创 2024-08-19 20:17:01 · 151 阅读 · 0 评论 -
GhostNetv3的Re-parameterization
在GhostNetV3中,重参数化是一种在训练阶段引入的技术,用于提高模型性能,而在推理阶段则通过逆向重参数化过程去除多余的分支,以避免增加额外的计算成本。具体来说,在训练过程中,深度卷积和1×1卷积中引入了线性并行分支,这些分支在训练后可以重新参数化,在推理时不会带来额外的成本。这是因为卷积和BatchNorm运算在推理过程中都是线性的,可以折叠成单个卷积层,其权重矩阵和偏置可以重参数化为所有分支的权重和偏置的总和。在推理时,通过逆向重参数化过程,可以删除重复的分支。原创 2024-08-06 11:25:55 · 204 阅读 · 0 评论 -
目标检测常用评价指标笔记
1、准确度指标Accuracy准确率:正确预测的正样本和负样本的总数/总数error_rate:错误预测的正样本和负样本总数/总数混淆矩阵Confusion Matrix:每一行之和表示该类别的真实样本数量,每一列之和表示被预测为该类别的样本数量,例如第一行,第一列数据表示预测是类1是50个,实际对的只有43个对角线越大,预测效果越好分类目标分类目标只有两类:positive正例和negtive负例True positives(TP):本身是正例,被预测成正例的个..原创 2021-12-06 14:33:31 · 2750 阅读 · 0 评论 -
yolov5读取单通道图像会怎样?
通过上图打印可知输入是固定3通道,那么意味着在读取图像中会对图像进行处理。原创 2023-05-05 15:54:51 · 1486 阅读 · 1 评论 -
yolov5和yolov3参数差异的主要原因是C3使用CSPNet
在C3的实现中,进入Bottleneck之前对输入使用1x1卷积实现通道方向降维,将输入的计算量减少。这也是CSPnet所说的。对比上面两张图,第一张是YOLOv5,第二张是YOLOv3,两者参数量主要的差异在C3和Bottleneck.yolov5和yolov3参数差异的主要原因是C3使用CSPNet。减少计算量的同时实现更丰富的梯度组合.原创 2023-05-05 14:48:15 · 434 阅读 · 1 评论 -
yolov5导出onnx转engine推理
使用上述文章中的代码ONNX转engine速度较慢, engine_file_path需要给出具体名称,如:yolov5_my.engine。pt转engine是先转ONNX,然后再到engine。将TensorRT的的lib加入环境变量中。需要提供配置文件和权重文件,不然导出模型不能正常推理。在win11系统环境path添加。原创 2024-02-22 10:49:11 · 1551 阅读 · 0 评论 -
yolov5三种TensorRT推理过程
4、把生成的yolov5l_best.wts文件导入\tensorrtx-yolov5-v5.0\yolov5\build\Release文件下,使用指 令yolov5.exe -s yolov5l_best.wts yolov5l_best.engine l 通过yolov5.exe生成yolov5l best.engine,参数l根据训练模型来改,可以是s\m\I\x。原创 2024-02-20 14:59:04 · 684 阅读 · 0 评论 -
yolov5部分超参
copy_paste:对于一张图片A使用Copy-paste数据增强方法,则需要从另外张图片B从随机选取目标子集O,再将O粘贴至A的随意位置.flipud: 0.00856 # 上下翻转。hsv_s: 0.664 # 饱和度。degrees: 0.373 #旋转角度。fliplr: 0.5 # 左右翻转。hsv_h: 0.0138 # 色调。hsv_v: 0.464 # 明度。scale: 0.898 # 缩放。shear: 0.602 # 剪切。原创 2022-09-23 10:04:55 · 799 阅读 · 0 评论 -
常见激活函数
与 ReLU(以及其他常用的激活单元,如 sigmoid 和 tanh 单元)不同,SiLU 的激活不是单调递增的。FReLU: FReLU的形式为 y = m a x ( x , T ( x ) ) y = max(x, T(x))y=max(x,T(x)) ,其中 T ( ⋅ ) T(·)T(⋅) 为二维空间条件。神经网络中的激活函数用来提升网络的非线性(只有非线性的激活函数才允许网络计算非平凡问题),以增强网络的表征能力。SiLU(Swish 激活函数):f(x)=x*sigmoid(x)原创 2022-09-23 15:06:02 · 3247 阅读 · 0 评论 -
目标跟踪结果展示和保存图片
【代码】目标跟踪结果展示和保存图片。原创 2022-09-24 16:10:53 · 835 阅读 · 0 评论 -
yolov5常见超参数
参数设定:超参数:(scratch 从头开始,finetune 微调)锚点锚框原创 2021-09-16 16:49:22 · 1124 阅读 · 0 评论 -
目标检测一般性问题
是衡量二分类模型精度的一种指标,兼顾了分类模型的精确率和召回率。它是精确率和召回率的调和平均数,最大为1,最小为0。但是还要考虑模型的泛化能力,F1-score过高但不能造成过拟合,影响模型的泛化能力。IoU也称作交并比,评价边界框正确性的度量指标,表示detection box(检测框)与ground truth(真实标签)的交集和并集的比值。FP:IoU原创 2024-02-18 11:20:33 · 610 阅读 · 0 评论 -
申威芯片UOS中opencv DNN部署推理
【代码】申威芯片UOS中opencv DNN推理。原创 2023-09-07 15:09:38 · 721 阅读 · 0 评论 -
win yolov5.7 tensorRT部署推理
在debug下报错:错误 LNK1104 无法打开文件“python310_d.lib”环境中没有安装python的debug版本,换成release环境。找到TensorRT-8.6.1.6\python/python/tensorrt-8.6.1-cp39-none-win_amd64.whl。下载tensorrt8.xx版本,适用于Windows的cuda11.x的版本。torch的版本要和CUDA一致,CUDA是11.7,原创 2023-10-20 10:19:05 · 187 阅读 · 0 评论 -
目标检测应用场景和发展趋势
上下文信息利用:由于视频相较于单张图片多了一个时间维度上的信息,因此如何有效地利用这些时间上下文信息来提高检测性能,是视频检测面临的一个重要问题。运动变化处理:视频中的目标检测需要在静态图像目标检测的基础上对目标因运动产生的各种变化进行处理。目标检测的未来是什么?- 知乎 (zhihu.com)2 与AutoML结合的目标检测。3 领域自适应的目标检测。7 信息融合目标检测。原创 2023-10-18 14:36:23 · 1635 阅读 · 0 评论