《deep learning for computer vi
mdjxy63
这个作者很懒,什么都没留下…
展开
-
《deep learning for cv with python practical bundle》 第六章读书笔记
这一章主要讲的是:模型融合模型融合的概念是:每一次迭代产生一个model,最终结果是对于这些model取平均值,因为每次迭代产生的模型对于特征提取的侧重点不同,因此平均的model的结果会有一些提升 主要涉及到两部分代码1)5个epoch,产生5个model,并对于这5个model进行单个测试2)对于这5个model进行融合,并且测试融合之后的效果part1:train_m...原创 2018-07-16 20:11:39 · 204 阅读 · 0 评论 -
faster rcnn解读【原理篇】
看了DL4CV的第三卷的15章faster rcnn之后,收获很多,特此做一下记录一.RCNNRCNN一共分为四步:step1:输入图片step2:采用selective search的方法获取潜在的roi,一共提取了2000个潜在roi,然后放入conv当中进行训练step3:使用迁移学习【用到了conv层】方法,提取step2的特征,从而获得最终的roiste...原创 2018-08-18 15:36:13 · 3354 阅读 · 1 评论 -
selective search概述
转载自:https://blog.csdn.net/u010402786/article/details/78051647https://blog.csdn.net/qq_28132591/article/details/73549560 ========================================================================...转载 2018-08-18 10:32:25 · 1407 阅读 · 0 评论 -
基于keras的googlenet的实现
googlenet首次提出了inception的概念,这里主要注意keras当中的concatenate函数,该函数用来实现inception结构,是横向拼接各级网路结构的函数一.网络结构的说明基于keras实现了minigooglenet,和原版googlenet相比少了inception 5a和inception 5b# -*- coding:utf-8 -*- __autho...原创 2018-07-31 06:53:37 · 4042 阅读 · 0 评论 -
《deep learning for cv with python》读书笔记第十章
本章主要介绍如何用python手撸前向传播和反向传播,激活函数是基于sigmoid的前向传播:计算出来预测值,然后与target Y做差值计算出来误差反向传播:根据前向传播得到的输出,得到delta值,用来更新权重值直接上代码:# -*- coding:utf-8 -*-__author__ = 'xuy'import numpy as np"""这个是10.1.3反向传...原创 2018-07-20 20:49:57 · 237 阅读 · 0 评论 -
《deep learning for cv with python start bundle》第九章读书笔记
本章主要讲优化函数以及正则化一.Vanilla gradient descent与SGD梯度下降方法是opt【优化函数】之一1.1Vanilla gradient descent与SGD概念Vanilla gradient descent是原版的梯度下降,SGD对于原版进行了改进,添加了batch_size从而使得:Vanilla gradient descent每个epoch...原创 2018-07-20 13:07:48 · 264 阅读 · 0 评论 -
keras中concatenate和add层的不同
转自:https://blog.csdn.net/u012193416/article/details/79479935在网络结构的设计上,经常说DenseNet和Inception中更多采用的是concatenate操作,而ResNet更多采用的add操作,那么这两个操作有什么异同呢?concatenate操作是网络结构设计中很重要的一种操作,经常用于将特征联合,多个卷积特征提取框架提取...转载 2018-07-18 19:29:52 · 11494 阅读 · 0 评论 -
基于keras的resnet的实现
何凯明大神在2015年提出了Resnet结构,于2016年对于该结构进行了优化,提出了Resnet-bottlenet结构,本文代码基于Resnet-bottlenet结构进行实现,本文主要实现pre-activation residual module # -*- coding:utf-8 -*- __author__ = 'xuy'from keras.layers.no...原创 2018-07-18 21:35:09 · 13629 阅读 · 0 评论 -
《deep learning for cv with python practical bundle》第八章读书笔记
这一章主要讲的是如何进行结果的优化,是纯理论,没有具体的代码一.对于数据集的划分:引用NG(吴恩达)的数据集划分方式在这里我们60%作为train set,40%作为测试集60%的train-set当中划分为:training,training-val.training set用来确定bias偏置40%的test-set当中,validation,testing,用来确定...原创 2018-07-16 20:23:33 · 249 阅读 · 0 评论 -
《deep learning for computer vision with python》keras的gpu环境配置
前言:发现了一本写的超赞的书《deep learning for computer vision with python》,是微软大神Adrian Rosebrock写的,基于keras深度学习框架,这篇文章主要记录一下keras+tensorflow-gpu的环境搭建一。需要注意的问题:1)由于keras默认是将tensorflow作为后台,因此我们需要首先安装tensorflow-...原创 2018-05-09 16:21:58 · 2040 阅读 · 4 评论