自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(236)
  • 资源 (2)
  • 收藏
  • 关注

原创 [Java微服务架构]理论总集篇

[Java微服务架构]系列也是接近尾声了,本系列系统梳理了从单体架构到分布式架构,微服务架构有哪些改变,做了什么样的设计以满足服务的CAP特性,为什么那样设计?设计时有哪些问题需要考虑,各个设计优缺点是什么?

2025-04-01 15:57:23 1285 1

原创 MCP入门

摘要: MCP(Model-Context-Protocol)是一种标准化协议,旨在解决AI应用与外部工具/数据交互时的NxM集成复杂性问题。其核心架构包括MCP Host(AI应用)、MCP Client(协议请求方)和MCP Server(协议执行方),通过中间层实现解耦与统一管理。MCP提供安全网关、降低厂商锁定风险,并支持灵活扩展。实际应用中需关注Server设计、安全授权、服务发现及性能监控。典型场景如IT支持机器人,可通过多个MCP Server分别调用本地系统与Jira API,由MCP Cl

2025-08-20 19:00:00 728

原创 提示词Token控制

本文介绍了优化大型语言模型(LLM)Prompt token的实用策略。主要内容包括:精简Prompt内容(清晰指令、限制示例、结构化输出);管理上下文窗口(截断、输入输出平衡、内容总结);高级技术(RAG检索增强、思维骨架提示、批处理);API参数微调(最大长度、停止序列等)。还提出落地应用建议:自适应RAG系统、任务分解让LLM专注自然语言处理部分,结合传统API提高效率。这些方法可在保证输出质量的同时有效控制token使用,优化模型性能和成本效益。

2025-08-19 22:23:32 806

原创 “你不干有的是AI干”,提示词中的“情感化提示”

这篇文章探讨了大型语言模型(LLM)中"情感化提示"的作用原理和应用场景。作者指出,这些看似"无厘头"的提示词之所以有效,是因为LLM通过统计学习建立了"高期望→高质量输出"的模式关联。文章将这类提示分为四类:赋予专业性身份、提高任务重要性、鼓励深度思考和施加竞争压力,并通过测试案例展示了不同提示的效果差异。最后强调,情感化提示需要与清晰的基础提示结合使用,在复杂推理、专业文本生成等场景中效果尤为显著。

2025-08-19 22:22:33 1087

原创 一文了解金融合规

金融合规与安全开发摘要 本文系统介绍了金融科技领域的安全合规要求。金融合规是法律强制的核心要求,保障系统稳定性和数据安全,涉及KYC、AML、风控等关键概念。 文中提供了金融合规术语速查表,从Java工程师视角解释了KYC认证、反洗钱监测、数据脱敏等技术的实现要点,强调加密存储、审计日志、权限校验等开发规范。 金融系统开发需具备合规思维:数据安全是首要任务,所有操作必须可追溯,业务逻辑需严格精准。开发人员需将合规要求融入技术实现,如KYC认证流程、实时交易监控等,确保系统符合金融监管标准。

2025-08-16 16:11:07 1073

原创 难以忘记,快速入门DDD

DDD(领域驱动设计)是一种解决软件复杂性的思维框架,其核心价值在于通过领域建模管理业务固有的复杂性。传统开发存在以下问题: 业务与技术语言鸿沟:通用语言可确保代码与业务术语一致,避免需求偏差。 贫血模型导致逻辑分散:业务规则分散在Service层,充血模型通过封装行为到领域对象保证一致性。 系统边界模糊:限界上下文和聚合划分明确边界,避免领域间耦合。 DDD通过领域模型、限界上下文等模式,将复杂业务逻辑转化为可维护的代码结构。

2025-08-14 23:49:44 992

原创 AI Agent 为什么需要记忆?

AI Agent 为什么需要记忆?核心瓶颈在于大语言模型(LLM)的 **“固定上下文窗口” (Fixed Context Window)** 是有限的,无法在一次处理中容纳长期的、跨会-话的全部信息。且应用需要控制成本、响应速度。为了让 Agent 能够执行复杂、长期的任务,就必须构建一个超越这个有限窗口的记忆系统。基于此,我们可以构建一个清晰的认知框架,从 **“存哪里”(存储架构)** 和 **“怎么用”(管理策略)** 两个基本维度来解构 Agent 的记忆系统。

2025-08-14 23:46:28 973

原创 微调效果验证与显存优化

本篇介绍了“验证集”、显存优化、日志增强与核心指标讲解。

2025-08-13 08:30:00 677

原创 LLMOps,就这么多?

让我们继续了解LLMOps。感觉都融在项目中了,属于一个健壮、可拓展的项目工程都需要考虑的。

2025-08-13 08:15:00 573

原创 LoRA微调实战:万字深度解析

本文介绍了参数高效微调(PEFT)技术及其在自然语言处理中的应用。文章首先探讨了如何选择适合的预训练模型,以文本风格润色任务为例,推荐了Qwen2.5系列模型。随后详细阐述了微调方案的选择标准,包括QLoRA、Flash Attention-2等技术组合。文章重点展示了PEFT实战过程,特别是数据准备阶段的数据增强技术,通过教师模型自动生成高质量的指令数据集,包括总结扩写、提问回答和风格迁移三种模板。

2025-08-12 20:30:43 1346

原创 微调入门:为什么微调

本文探讨了大语言模型微调的技术选择与应用场景。文章首先分析了需要微调的四种典型情况:领域差异大、低资源语言、数据敏感性和硬件限制。随后详细对比了全量微调(Full Fine-tuning)和参数高效微调(PEFT)两类方法,重点介绍了LoRA、QLoRA等技术的原理与适用场景。通过对比表格,总结了不同微调方法在显存需求、训练速度、性能上限等方面的差异,并提供了技术选型建议。最后比较了RAG与微调在垂直领域的应用差异,指出RAG侧重知识增强而微调侧重技能传授。全文为开发者提供了清晰的微调技术路线图,特别强调了

2025-08-12 20:26:32 574

原创 从零构建TransformerP2-新闻分类Demo

本文介绍了一个从零构建Transformer模型的完整流程,主要用于新闻分类任务。代码使用PyTorch实现,包含关键组件:词嵌入层(TokenEmbedding)、位置编码(PositionalEncoding)和多头注意力机制(MultiHeadAttention)。文章强调LLM应用工程师需要对Transformer有基本理解,并提供了详细的模块设计说明和代码实现。模型采用标准的Transformer架构,包括缩放点积注意力、多头机制等技术,适用于序列数据处理任务。代码由QWen3-Coder生成,可

2025-08-08 21:58:32 433

原创 从零构建TransformerP1-了解设计

本文介绍了如何基于PyTorch实现一个完整的Transformer模型。文章首先回顾了序列任务的特点和Transformer的核心优势,特别是其自注意力机制能有效建模长距离依赖和元素间关系。作者详细讲解了输入序列的处理方式(分词、词向量嵌入、位置编码)以及批量训练技巧(padding和mask)。通过对比RNN/LSTM和CNN在长距离依赖处理上的不足,凸显了Transformer的架构优势。最后,文章以文本分类任务为例,展示了Transformer如何通过自注意力机制解决语义歧义问题,建立词之间的关联

2025-08-08 21:56:38 1246

原创 PyTorch Quickstart

本文介绍了PyTorch快速入门指南,重点讲解了数据处理和模型优化两个核心环节。在数据处理部分,详细说明了Dataset和DataLoader的作用:Dataset负责样本管理和索引访问,DataLoader实现批量加载和并行处理。同时介绍了PyTorch提供的三大领域工具箱(TorchText、TorchVision、TorchAudio)及其内置功能。在模型优化部分,对比了手动更新参数和使用优化器的区别,演示了训练循环的实现流程,包括前向传播、损失计算、反向传播和参数更新步骤,并提供了测试模型性能的标准

2025-08-08 00:43:36 998

原创 PyTorch 核心三件套:Tensor、Module、Autograd

本文介绍了PyTorch的核心组件Tensor和Module。Tensor作为多维数组,是深度学习的基础数据结构,用于表示输入数据、标签、模型参数及中间计算结果。Module是构建神经网络的基类,通过定义forward()方法实现数据流动逻辑。文章详细讲解了Tensor的五大应用场景(数据表示、标签、参数存储、中间计算、梯度计算)和常用API,并演示了Tensor的创建、运算和自动求导功能。同时介绍了使用nn.Sequential快速构建模型和自定义Module子类的方法,帮助读者从工程角度理解PyTorc

2025-08-07 21:49:38 375

原创 神经网络入门指南:从零理解 PyTorch 的核心思想

本指南适合以下读者:- 正在学习 PyTorch,已掌握基础三件套:`Tensor`、`nn.Module`、`Autograd`- 希望补全对“神经网络”整体认知的学习者- 想要建立直觉理解而非仅记忆公式的新手

2025-08-07 21:45:14 708

原创 PyTorch入门引导

为什么要学习PyTorch?微调、部署、研究都需要。- 现代AI研究的通用语言基础就是PyTorch。- 几乎所有的微调工具和库,包括Hugging Face的transformers, peft, trl,其底层都是基于PyTorch构建的。- 当你需要排查部署中的性能瓶颈、显存溢出(OOM)等问题时,理解模型在PyTorch中是如何加载和计算的,将是解决问题的关键。尝试让读者通过本篇快速认识PyTorch,开始学习PyTorch。

2025-08-06 23:37:51 1013

原创 RAG优化-二进制向量,为RAG带来32倍内存效率提升

本文探讨了在大规模RAG系统中使用二进制量化技术提升效率的方法。面对海量文档处理时标准向量检索的内存消耗问题,二进制量化通过将浮点向量转换为1位二进制码,实现32倍内存压缩和毫秒级响应。尽管牺牲了部分精度,但高维向量的整体语义模式仍保持有效,配合高效的汉明距离计算,能显著提升检索速度。文章详细介绍了技术原理、优势权衡及实践应用方案,证明该技术是处理千万级以上数据的高性价比选择,体现了"以精度换效率"的工程智慧。

2025-08-06 08:30:00 1684

原创 FastAPI快速入门P2:与SpringBoot比较

帮助Java开发者快速建立知识映射

2025-08-05 22:22:33 828

原创 从Agent到CrewAI,一口气读懂

本文介绍了从Agent到CrewAI框架的演进过程。首先解释LLM应用与传统应用的区别,指出LLM应用的输入、过程和输出更具不确定性。接着阐述LLM Agent的概念,即具备感知、推理、行动能力的自动化LLM系统,并分析构建优秀Agent的六大特征。文章重点讨论Multi-Agent系统,提出任务设计应遵循8/2法则(80%精力用于任务设计,20%用于代理定义),强调动态任务驱动的重要性。最后介绍CrewAI框架的三个核心类(Agent、Task、Crew)及其协作流程,包括顺序执行和分层执行两种模式,展示

2025-08-05 22:11:07 1479

原创 RAG深入了解P1:从RAG类型出发看优化点

本文系统梳理了RAG(检索增强生成)技术的最新发展与应用。首先介绍了RAG的多种类型:基础RAG(标准检索-生成模式)、迭代RAG(引入反馈循环)、查询优化RAG(优化检索查询)、混合RAG(融合多种检索策略)以及RAG-Agent系统(结合智能代理)。接着探讨了RAG的优化方向,重点在于提升检索相关性和生成质量。文章指出,RAG技术正朝着更智能、自适应和具备多模态能力的方向发展,能够应对日益复杂的知识处理需求。通过分析不同类型RAG的特点和适用场景,为构建高效RAG系统提供了参考框架。

2025-07-17 22:00:00 914

原创 FastAPI快速入门

摘要:本文介绍了FastAPI快速入门指南,对比了Uvicorn与Tomcat NIO、Netty的网络模型差异。重点讲解了Pydantic数据验证和FastAPI的依赖注入系统,展示了如何通过BaseModel定义数据结构,以及使用Depends实现类似Spring AOP的认证功能。文章还比较了pip与Poetry/PDM的依赖管理方式,为Java开发者提供了Python Web开发的快速上手参考。

2025-07-17 08:15:00 683

原创 FastAPI-P1:Pydantic模型与参数额外信息

FastAPI中的Pydantic模型与参数校验 本文介绍了FastAPI中Pydantic模型的使用方法及其优势。Pydantic通过BaseModel实现数据验证和类型转换,可定义结构化数据模型并自动校验字段类型和格式。文章展示了如何通过Field为模型字段添加验证规则和元数据。 同时还讲解了两种参数校验方式: 使用Query为查询参数声明验证规则、默认值和描述信息 使用Annotated结合Query/Path/Body进行类型提示和元数据标注 这些功能使FastAPI能够自动处理数据验证、生成API

2025-07-14 23:41:46 733

原创 Pythonic:Python 语言习惯和哲学的代码风格

摘要: 本文介绍了Pythonic规范的核心原则与常见实践,强调遵循PEP 8指南编写符合Python语言哲学的代码。内容涵盖命名规范(snake_case变量、PascalCase类)、代码结构优化(列表推导式、上下文管理器)、迭代技巧(enumerate/zip)以及布尔简化等典型场景,通过对比非Pythonic写法突出其简洁性和可读性优势。文章指出遵循这些规范能提升代码效率、可维护性及团队协作效率,并推荐查阅官方PEP 8文档获取完整标准。全文以实用示例展示如何将Python特性转化为优雅的编码实践。

2025-07-14 23:37:00 966

原创 咨询导览,AI发展趋势

本篇作下列两篇文章的搬运整理。https://www.turing.com/resources/top-llm-trendshttps://prajnaaiwisdom.medium.com/llm-trends-2025-a-deep-dive-into-the-future-of-large-language-models-bff23aa7cdbc总的来说,符合之前网上的四字总结:“专、小、廉、强”。

2025-07-12 23:18:52 873

原创 Python基础:并行与并发概念

总的来说,Python多线程实质上是并发,其受限于GIL的存在。但Python可以通过asyncio或Multiprocessing绕过GIL。也可以通过 C/C++(如 Cython)或 Rust 编写扩展模块。这些模块在执行时不受 GIL 限制,可以充分利用多核并行计算。许多高性能的 AI 库(如 NumPy、TensorFlow、PyTorch)底层就是用 C/C++ 优化的。

2025-07-12 08:15:00 851

原创 Transformer:从入门到放弃

没什么好说的,Transformer:从入门到放弃。推荐看资料。本文深入解析了Transformer模型的核心架构与自注意力机制。Transformer采用编码-解码结构,编码器由自注意力层和前馈神经网络组成,解码器额外引入编码器-解码器注意力层。自注意力机制通过查询(Query)、键(Key)、值(Value)向量计算词元间关联度,动态调整表示,有效解决长距离依赖问题。其并行化处理能力显著优于传统RNN模型。文章还详细阐述了自注意力的矩阵化实现流程,并推荐了相关学习资源。

2025-07-11 08:45:00 281

原创 大模型基础:词元与LLM局限性及应对方案

摘要 本文系统探讨了语言模型(LM)的核心概念、技术缺陷及解决方案。首先阐述了词元(token)作为文本基本单元的定义,分析了不同词元化方法(如BPE、WordPiece)的特点与应用场景。其次揭示了语言模型的6大类缺陷:事实性错误(如幻觉)、上下文处理局限(如注意力衰减)、逻辑推理不足、社会偏见、可控性差及高昂成本。最后指出提示工程、RAG、Agent等技术正是为应对这些缺陷而产生。文章通过技术解析与案例说明,为理解语言模型的运作机制及局限性提供了全面视角。

2025-07-11 08:15:00 549

原创 深入探索 Embedding 模型:从理论到实践

本文旨在深入探讨 Embedding 模型的核心概念、不同类型的模型优势劣势与适用场景,并着重阐述在生产环境中如何进行科学的模型选择与验证。

2025-07-10 08:30:00 829

原创 Prompt Chaining:多步分解和顺序执行思想

Prompt Chaining——链式提示。Prompt Chaining 缺乏灵活性和自适应性,中间结果解析也相对脆弱。然而,它的**多步分解和顺序执行思想**,正是 **ReAct**(通过 LLM 驱动的思考-行动循环实现复杂任务)和**查询重写**(优化搜索或检索输入)等更高级 LLM 应用模式的**基石**。

2025-07-10 08:15:00 479

原创 从问题出发看JVM的内存管理

JVM垃圾回收机制设计与优化 本文探讨JVM内存管理的核心问题与解决方案。首先分析垃圾识别算法:引用计数法存在循环引用缺陷,而可达性分析算法通过GC Roots遍历对象图实现准确判断。在垃圾清理方面,分代收集理论指导内存区域划分,采用不同回收策略。针对Stop-The-World(STW)的停顿问题,提出并发GC方案,通过三色标记法实现并发标记,并采用增量更新或原始快照技术解决对象消失问题。最后以G1回收器为例,展示如何通过Region细粒度划分解决大内存瓶颈,实现高效回收。文章系统性地阐述了JVM在保证内

2025-07-09 19:00:00 1063

原创 Netty解析与简单C/S架构

摘要: Netty框架采用Boss-Worker线程模型,BossGroup单线程处理连接,WorkerGroup多线程处理数据读写,通过ChannelPipeline实现数据流的入站(解码→业务处理)和出站(编码→响应)。与Redis的单线程命令处理不同,Netty的多线程设计适用于通用网络应用。搭建C/S架构时需配置ServerBootstrap/ClientBootstrap、EventLoopGroup及编解码器(如StringDecoder/Encoder),并通过自定义Handler实现业务逻辑

2025-07-09 08:30:00 1004

原创 LLM应用开发学习路线:快速入门路线与教程汇总

本文分享LLM应用开发的学习路线与资源汇总,包含Python基础、LLM核心技术(RAG/Agent)的进阶路径。作者在GitHub开源了系统化学习资料库(https://github.com/tataCrayon/LLM-DEV-COOKBOOK),提供从入门到实践的完整教程与代码Demo。内容涵盖核心知识图谱、学习框架图及分阶段教程索引,适合开发者快速掌握大语言模型应用开发的关键技能。欢迎交流指正,共同探索LLM技术落地场景。

2025-07-08 08:30:00 914

原创 Netty:精致的NIO

本文探讨了Java中C/S程序的两种实现方式及其在高并发场景下的问题。首先介绍了基于阻塞I/O(Blocking I/O)的传统实现,分析其在高并发时会导致线程爆炸、内存耗尽及频繁上下文切换等问题。然后介绍了Java NIO的非阻塞解决方案,通过Selector机制避免了线程过多的问题,但仍存在编程复杂度高的缺点。文章通过代码示例对比两种方案,揭示了传统阻塞模型在高并发环境中的局限性,为后续探讨更高效的网络编程模型奠定基础。

2025-07-08 08:15:00 717

原创 从问题出发看Spring的对象创建与管理

本文探讨了Spring框架的核心特性——依赖注入(DI)及其背后的设计思想。作者以订单处理系统为例,指出传统new创建对象方式存在性能开销大、高耦合和生命周期管理混乱等问题。通过引入IoC容器和依赖注入机制,Spring实现了对象创建与使用的解耦。文章详细解析了Spring如何通过BeanDefinition获取管理对象,并重点阐述了应对复杂依赖关系的分段创建流程,包括缓存检查、实例创建、循环依赖处理、属性注入等关键步骤。这种设计有效解决了对象间的复杂依赖问题,使系统更灵活高效。

2025-07-07 22:28:02 877 2

原创 提升表达-架构图绘制

本文介绍了软件架构图的设计原则与绘制方法。首先提出4+1架构范式作为理论参考,随后重点解析实用的4R模型(Rank分层、Role角色、Relation关系、Rule规则),并说明其在业务架构、应用架构等不同场景的应用。文章还介绍了C4架构模型,从多层次展示系统设计。最后从业务架构、客户端架构、系统架构等维度给出具体绘图技巧,强调通过颜色标识、分组管理、明确关系等方式提升架构图的清晰度与专业性。核心在于根据不同受众和目的,选择合适的抽象层级与表达方式。

2025-07-07 22:25:51 903

原创 Prompt:面向目标的提示词

摘要: 随着大语言模型(LLM)能力的提升,提示词工程从传统的结构化“引导型”向简洁的“目标驱动型”转变。传统提示词依赖角色、任务等六要素描述,而目标驱动型只需提供必要信息和清晰目标(如任务背景+核心要求),即可激发模型的创造力。实验表明,简化后的提示词在生成小红书文案等任务中效果更佳,甚至超预期满足需求。但需注意任务边界的精准定义(如禁用词、合规要求),以平衡简洁性与约束力。目标驱动提示词的核心优势在于用边界划定框架,释放模型自主优化能力,体现“少即是多”的原则。

2025-06-25 23:32:00 1084 1

原创 AQS核心解析:三问三知

摘要:AQS(AbstractQueuedSynchronizer)是Java并发编程的核心框架,通过CLH队列管理等待线程,解决了锁竞争中的线程调度问题。当线程获取锁失败时,AQS将其封装为Node节点加入队列并挂起,避免CPU空转。支持公平/非公平两种模式,非公平模式允许插队以提高吞吐量。锁释放时仅唤醒队首线程,避免"惊群效应"。源码实现中,通过volatile state字段记录锁状态,addWaiter构建等待队列,acquireQueued实现精准唤醒机制。

2025-06-25 08:30:00 1138

原创 Agent轻松通-P3:分析我们的Agent

摘要:本文介绍了如何使用LangChain的回调机制分析Agent行为,并提出从效率、准确性、鲁棒性三个维度优化Agent的方法。作者设计了一个"LLM即评委"的评估系统,通过自定义Prompt模板让LLM对Agent的执行轨迹进行自动化评估(包括效率、准确性、忠实度等指标),并生成包含评分和改进建议的完整报告。示例展示了如何利用DeepSeek模型评估Agent在回答"Java与Python构建LLM应用对比"问题时的表现,最终给出8.5/10的评分及详细优化建议,如改进搜索关键词精准度、补充技术细节等。

2025-06-20 22:04:09 1351 2

原创 Agent轻松通-P2:执行一个简单的Agent

本文介绍了如何使用LangChain搭建一个具备网络搜索和网页抓取功能的AI Agent。通过定义两个工具函数(搜索工具和网页抓取工具),结合DeepSeek大语言模型,创建一个能够自主执行研究任务的智能体。文章详细讲解了工具的编写规范、Agent的构建过程,以及如何通过ReAct提示词模板使Agent具备"思考-行动"能力,并输出调试信息观察其运行过程。该Agent可以自动完成网络搜索、分析网页内容等任务,展示了LangChain框架简化Agent开发的强大能力。

2025-06-20 22:01:05 990

文件夹移动器(FolderMove)免安装版

用于软件搬家,电脑所有引用也可以移动,但是那些修改注册表也一定要待在C盘才正常的软件,莫得办法。

2020-12-29

【MySQL】创建大量测试用户数据SQL

创建大量填充用用户数据,可以自己增添字段细节。SQL函数均有说明

2020-12-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除