http://acm.hdu.edu.cn/showproblem.php?pid=3657
#include<iostream>
using namespace std;
#define N 2550
#define M 2000000
#define inf 0x7fffffff
struct Graph{
struct node{
int v,next,flow;
node(){};
node(int a,int b,int c):next(a),v(b),flow(c){};
}E[M];
int pre[N];
int head[N];
int cur[N];
int dis[N];
int NV,NE;
int gap[N];
void init(int n){
memset(head,-1,sizeof(head));
NE=0;
NV=n;
}
void insert(int u,int v,int w){
E[NE]=node(head[u],v,w);
head[u]=NE++;
E[NE]=node(head[v],u,0);
head[v]=NE++;
}
int SAP(int s,int t){
memset(dis,0,sizeof(dis));
memset(gap,0,sizeof(gap));
for(int i=0;i<NV;i++)
cur[i]=head[i];
int u=pre[s]=s;
int maxflow=0,aug=INT_MAX;
gap[0]=NV;
while(dis[s]<NV){
loop: for(int &i=cur[u];i!=-1;i=E[i].next){
int v=E[i].v;
if(E[i].flow&&dis[u]==dis[v]+1){
if(aug>E[i].flow)
aug=E[i].flow;
pre[v]=u;
u=v;
if(v==t){
maxflow+=aug;
for(u=pre[u];v!=s;v=u,u=pre[u]){
E[cur[u]].flow-=aug;
E[cur[u]^1].flow+=aug;
}
aug=INT_MAX;
}
goto loop;
}
}
int mindis=NV;
for(int i=head[u];i!=-1;i=E[i].next){
int v=E[i].v;
if(E[i].flow&&mindis>dis[v]){
cur[u]=i;
mindis=dis[v];
}
}
if(--gap[dis[u]]==0)
break;
gap[dis[u]=mindis+1]++;
u=pre[u];
}
return maxflow;
}
}G;
int map[55][55];
int main(void){
int n,m,k;
while(~scanf("%d%d%d",&n,&m,&k)){
int beg=n*m+1,end=beg+1;
G.init(end);
int s=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
scanf("%d",&map[i][j]);
s+=map[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
int u=(i-1)*m+j;
if((i+j)%2){
G.insert(beg,u,map[i][j]);
if(i>1) G.insert(u,u-m,2*(map[i][j]&map[i-1][j]));
if(j>1) G.insert(u,u-1,2*(map[i][j]&map[i][j-1]));
if(i<n) G.insert(u,u+m,2*(map[i][j]&map[i+1][j]));
if(j<m) G.insert(u,u+1,2*(map[i][j]&map[i][j+1]));
}
else
G.insert(u,end,map[i][j]);
}
while(k--){
int x,y;
scanf("%d%d",&x,&y);
int u=(x-1)*m+y;
if((x+y)%2){
for(int i=G.head[beg];i!=-1;i=G.E[i].next)
if(G.E[i].v==u){
G.E[i].flow=inf;
break;
}
}
else{
for(int i=G.head[u];i!=-1;i=G.E[i].next)
if(G.E[i].v==end){
G.E[i].flow=inf;
break;
}
}
}
printf("%d\n",s-G.SAP(beg,end));
}
}
在网上看到的一句话恍然大悟啊,建立一个最小割模型之后, 假设x点与源点是连着的,说明你是把x点给取到手了,不连,说明你是把x点去除,之前一直不太明白边的容量是怎么来确定的,现在知道了,方格取数是相邻两个不能取,假设x,y是相邻的两点,他们直接建无穷大的边的原因就是:假设你最后把x,y都取来了,那么x和y的这条边就是一条割边,最小割是一定要把这条割边去掉的,去掉的代价就是该边的权值,试想如果这条边是无穷大的,程序会来割这条边吗?显然不会!所以这样就保证了x,y是不会同时被取到的。而这题相邻的可以取,只不过要额外的代价,还是假设x,y都取来了,那么这时候x,y边就是割边,程序会把它割掉,所以该边容量不是无穷大,而是相应的代价,至于后面的一定要取的几个点,只需要把他们和源点或汇点的容量设为无穷大,这样程序一定不会去割这条边,最后的结果就是这些点都留下来了,也就是都取了!