位图及布隆过滤器
1. 位图
数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。比如:
所谓位图,就是把数据映射到二进制的bit位中,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的
。位图的优点就是快速并且节省空间,但是缺点是只能映射整形
。
1.1 位图的模拟实现
#pragma once
#include<iostream>
#include<vector>
using namespace std;
namespace wzy
{
//使用了一个非类型的模板参数,这个N表示常数,表示有多少位
template<size_t N>
class bitset
{
public:
bitset()
{
//_bits.resize(N / 8 + 1,0);
_bits.resize((N >> 3)+ 1, 0); //因为+的优先级更高,所以需要加()
}
bitset(size_t n)
{
_bits.resize((n >> 3) + 1, 0);
}
//将第x个位 置为1
void set(size_t x)
{
size_t index = x >> 3; //vector当中的第几个char类型
size_t num = x % 8;//char类型当中的第几个bit位
_bits[index] |= (1 << num); //因为按位或只影响这一个bit位
}
//将第x个位 置为0
void reset(size_t x)
{
size_t index = x >> 3;
size_t num = x % 8;
_bits[index] &= (~(1 << num));
}
//如果是1返回真,如果是0返回假
bool test(size_t x)
{
size_t index = x >> 3;
size_t num = x % 8;
return _bits[index] & (1 << num); //全零返回假 有一个位非零就返回真
}
private:
std::vector<char> _bits; //对于vector里面每一个存放的都是一个char类型,相当于8个位,可以映射8个数
};
//对于多个同名的命名空间编译器会自己把他们合并在一起
void testbitset()
{
bitset<100> bs;
bs.set(10);
bs.set(17);
bs.set(80);
bs.reset(80);
bs.set(81);
cout << bs.test(10) << endl;
cout << bs.test(17) << endl;
cout << bs.test(80) << endl;
cout << bs.test(81) << endl;
}
}
1.2 位图的应用
- 快速查找某个数据是否在一个集合中
- 排序
- 求两个集合的交集、并集等
- 操作系统中磁盘块标记
2 布隆过滤器
2.1 布隆过滤器概念
布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中
(这种方式映射的位置越多,误判的概率也就越小)。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。 将哈希与位图结合,即是布隆过滤器
2.2 布隆过滤器的插入
向布隆过滤器中插入:“baidu”
注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判。(使用布隆过滤器的情况就是允许误差的出现。)
2.3 布隆过滤器的查找
布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定为1。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。
bool Test(const K& key)
{
HashFunc1 hf1;
size_t i1 = hf1(key) % _n;
//如果这个位置等于1则表示不一定存在,但是如果只要映射的多个位置有一个位置为0就表示一定不在
if (!_bs.test(i1))
{
return false;
}
HashFunc2 hf2;
size_t i2 = hf2(key) % _n;
if (!_bs.test(i2))
{
return false;
}
HashFunc3 hf3;
size_t i3 = hf3(key) % _n;
if (!_bs.test(i3))
{
return false;
}
return true;
}
注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因为有些哈希函数存在一定的误判。
- 比如:在布隆过滤器中查找"alibaba"时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其他元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。
2.4 布隆过滤器的删除
布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。
- 比如:删除上图中"tencent"元素,如果直接将该元素所对应的二进制比特位置0,“baidu”元素也被删除了,因为这两个元素在多个哈希函数计算出的比特位上刚好有重叠。
一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。(引用计数的方式,但是这就大打折扣的消减了位图节省空间的优势)
缺陷:
- 无法确认元素是否真正在布隆过滤器中
- 存在计数回绕
2.5 布隆过滤器的优缺点
优点:
- 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关
- 哈希函数相互之间没有关系,方便硬件并行运算
- 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
- 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
- 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
- 使用同一组散列函数的布隆过滤器可以进行交、并、差运算
缺点:
- 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)
- 不能获取元素本身
- 一般情况下不能从布隆过滤器中删除元素
- 如果采用计数方式删除,可能会存在计数回绕问题
- 位图:存储标识整形,效率高,节省空间
- 布隆过滤器:存储标识任意类型(字符串最常见),效率高,节省空间,缺点就是可能存在误判 ,不一定完全准确
2.6 布隆过滤器的模拟实现
#include"BitSet.h"
#include<string>
using namespace std;
//布隆过滤器可以存储标识任意类型
//这里最主要的就是字符串
//但是这里是有问题的,因为模板的缺省参数也必须从右往左给,所以这里是错的
//template<class K = string,
//class HashFunc1,
//class HashFunc2,
//class HashFunc3> //映射的位越多,那么也就越消耗空间,节省空间这一项就大打折扣了
//这里要是用不同的字符串哈希算法来算不同的映射位置
//第一种使用KBDR字符串哈希算法
struct StrHash1
{
size_t operator()(const string& s)
{
size_t hash = 0;
for (auto ch : s)
{
hash = hash * 131 + ch;
}
return hash;
}
};
struct StrHash2
{
size_t operator()(const string& s)
{
size_t hash = 0;
for (auto ch : s)
{
hash = 65599 * hash + ch;
}
return hash;
}
};
struct StrHash3
{
size_t operator()(const string& s)
{
size_t hash = 0;
size_t magic = 63689;
for (auto ch :s)
{
hash = hash * magic + ch;
magic *= 378551;
}
return hash;
}
};
template<size_t N,class K = string,
class HashFunc1 = StrHash1,
class HashFunc2 = StrHash2,
class HashFunc3 = StrHash3>
class BloomFilter
{
public:
BloomFilter()
:_bs(N * 4) //这里其实有一个推导出来的公式。映射的个数和底层位图所要开的空间大小之间存在一个4倍的关系
,_n(N * 4)
{}
void Set(const K& key)
{
HashFunc1 hf1;
size_t i1 = hf1(key) % _n;
_bs.set(i1);
HashFunc2 hf2;
size_t i2 = hf2(key) % _n;
_bs.set(i2);
HashFunc3 hf3;
size_t i3 = hf3(key) % _n;
_bs.set(i3);
//cout << i1 << "--" << i2 << "--" << i3 << endl; //打印一下冲突的分布
}
//一般不支持删除,删除有可能存在把其他值给删掉的情况()因为别人也可能会映射这个位置
void Reset(const K& key)
{}
bool Test(const K& key)
{
HashFunc1 hf1;
size_t i1 = hf1(key) % _n;
//如果这个位置等于1则表示不一定存在,但是如果只要映射的多个位置有一个位置为0就表示一定不在
if (!_bs.test(i1))
{
return false;
}
HashFunc2 hf2;
size_t i2 = hf2(key) % _n;
if (!_bs.test(i2))
{
return false;
}
HashFunc3 hf3;
size_t i3 = hf3(key) % _n;
if (!_bs.test(i3))
{
return false;
}
return true;
}
private:
wzy::bitset<N> _bs;
size_t _n; //底层所开位图的空间大小
};
void TestBloomFilter()
{
//那么一开始的布隆过滤器应该开多大的位图呢?
//存N个值,那么底层位图所开辟的空间应该是4*N,但是仿函数所算出来的有可能会超过4*N,所以还需要一个来保存空间的大小
BloomFilter<10> bf;
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965978");
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965974");
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965975");
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965957");
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965944");
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965945");
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965946");
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965947");
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965948");
bf.Set("https://blog.csdn.net/MEANSWER/article/details/117965949");
//应该都存在 输出为1
cout << bf.Test("https://blog.csdn.net/MEANSWER/article/details/117965978") << endl;
cout << bf.Test("https://blog.csdn.net/MEANSWER/article/details/117965974") << endl;
cout << bf.Test("https://blog.csdn.net/MEANSWER/article/details/117965975") << endl;
cout << bf.Test("https://blog.csdn.net/MEANSWER/article/details/117965957") << endl;
cout << endl;
应该不存在,输出为0
cout << bf.Test("https://blog.csdn.net/MEANSWER/article/details/117965988") << endl;
cout << bf.Test("https://blog.csdn.net/MEANSWER/article/details/117965999") << endl;
}
3. 海量数据处理
1 布隆过滤器
- 给两个文件,分别有100亿个query,我们只有1G内存,如何找到两个文件交集?分别给出精确算法和近似算法
精确算法:①估算给的数据大概占用多少空间,假设一个query平均是10byte,100亿个query大概占用100G②割分:使用哈希割分(不能是平均割分)
-
100Gquery的文件,创建200个小文件A0、A1、…A199,每个文件的大小为500M左右,依次获取文件中query,i = Hash(query) % 200,每个query进入算出的Ai文件,然后B文件也采用同样的方式得到200个小文件B0、B1、…B199,然后把Ai文件分别使用布隆过滤器的方式进行映射,然后Bi文件对应的去查找,然后将这200个小文件的所有交集相加就是两个文件精确的集合了。采用
哈希切割
的好处就是能够让A和B文件中相同query一定进入编号相同的Ai和Bi小文件,需要按编号比即可,时间复杂度为O(N),这样效率高。如果采用平均切分
方法也是可以的,但是跟Ai小文件的交集,可能在【B0,B199】都需要比一遍,时间复杂度为O(N*N)近似算法:BloomFilter(但是交集中可能存在不是交集的内容)
- 如何扩展BloomFilter使得它支持删除元素的操作(使用引用计数的方式,但是这种方式需要多个bit位来存储当前有映射这个位置的个数,占用的空间多了,不能很好发挥布隆过滤器节省空间的优势)
2 哈希切割
- 给一个超过100G大小的log file, log中存着IP地址, 设计算法找到出现次数最多的IP地址? 与上题条件相同,如何找到top K的IP?
- i = hashstr(ip) % 100,ip转换为整形,模100,得到i是多少,这个ip就进入第i个小文件(但是这个不是平均切割,有可能某个文件大于1G,也有可能某个文件小于1G),可以采用map或者unordered_map对每个文件中的ip进行统计次数,然后在拿每个文件中所统计次数最多的进行比较,就可以得到ip出现次数最多的ip。
- 可以使用优先级队列内部数据结构使用小堆,建立一个降序的队列,那么前K个就是要找的ip地址。
- 平均切割有可能同一个ip地址存在在任意一个小文件中,但是使用哈希切割相同的ip地址一定会进入相同的文件,这也是解这类题的关键
3 位图应用
- 给定100亿个整数,设计算法找到只出现一次的整数?(因为整数只有42亿多个,所以肯定有重复的)
- 解法一:哈希切割(万能解法),大概是40G大小,切出来50个小文件,然后在对每一个小文件进行整数的统计,找到所有里面只出现一次的,然后再将他们加起来。
- 解法二位图及其变形:对解法一进行优化,使用两个位图,且两个位图相对应的两个bit位来共同表示一个数存在的状态,00表示0次,01表示一次,10表示2次及以上出现次数,然后找所有01状态的,就是我们要找的只出现一次的整数,空间和时间上的效率都比哈希切割更高。
- 给两个文件,分别有100亿个整数,我们只有1G内存,如何找到两个文件交集?
- 位图:首先想清楚,整形只有42亿多个,所以这里面的整形肯定有大量重复的,只需要大概512M就能够映射下42亿多个整形。假设两个文件分别叫做A、B,把文件A中的整形都设置到一个位图bit_set中,读取文件B的每一个整形,判断在不在A中,在就是交集。
- 假设两个文件分别叫做A、B,把文件A和B中的整形都分别映射到一个位图bit_set中,然后让A的位图按位“与”上B的位图,A中bit位设置为1的,就是交集。
- 位图应用变形:1个文件有100亿个int,1G内存,设计算法找到出现次数不超过2次的所有整数
- 这里可以用第一题的解法二,用两个位图,但是此时应该存在4中状态,00表示0次,01表示1次,10表示2次,11表示3次及以上,然后找所有01和10状态的,就是我们要找的出现不超过2次的整数,空间和时间上的效率都比哈希切割更高。(当然哈希切割也是可以的)
扩展知识:
- 用布隆过滤器来当做一个前置过滤层(还可以应用到过滤垃圾文件)
对于一个学校来说,学生有很多,那么这些学生的信息都保存在数据库中,但是访问数据库就相当于去访问磁盘,效率是很低的。现在来了一个学生,我想让你判断一下是否是这个学校的学生?可以在数据库前面加一个布隆过滤器,就是拿着全校学生的唯一标识符(身份证号码、手机号码、学号等其中的一个,通过多个hash函数进行映射),来了一个学生我先进行布隆过滤器的查找,如果映射的位置的bit位都是1,说明可能是存在的(因为可能发生了哈希冲突,即使概率已经很低了),让他再去数据库中查找,是否有这个人。但是如果所映射的bit位并不是都是1,说明学校的学生中一定没有这个人,也就避免了再去数据库查找的过程。 - 分布式
对于一个大型的公司来说,是要有很多个数据进行存储,如果把数据都存储在一台机器上,显然是不安全的,万一这台主机出现问题呢?所以需要把数据存储在很多台机器上,然后把多台机器很好的管理起来。此时用户来了一个数据,拿着这个客户的唯一标识符(微信号、手机号)先转换为整数,然后在通过hash函数找到对应的主机,但是万一此时坏掉一台,那么hash函数的capacity不就出现了问题,那么就全乱了,如果是在增加5000台机器,那么在查找数据的时候也就乱了,所以这里又引入了一个一致性哈希。
转载:
一致性哈希详解文章
简单理解一致性哈希:上面所说的当10000台机器突然坏掉一台或者想要增加5000台的时候,查找数据就会出现很大的问题。此时一致性哈希不再使用模机器的台数,而是模一个固定的值i= hash(key) % 2^32 , 得到的结果就是就是0-2^32-1的范围,假设此时算出的结果在0-10000的就映射到0号机器,10000-20000就映射1号机器,也就把 0-2^32-1根据机器台数划分为了10000份,映射的机器也就在0-9999号之间,那么如果此时我要更加5000台机器,那么首先我找到这10000台机器中数据比较多的5000台,然后拿出比如0号机器的0-5000范围的数据映射到10000号机器上,这样就可以缓解扩容带来的问题。
哈希和MD5加密算法还有关系