冷战时期美苏争霸的星球大战,余温尚在,现在以AI为制胜战略高点的大国芯片算力之争,帷幕拉开。
AI时代的算力成本决定了创新成本。
算力源于芯片,作为算法和数据的基础设施,其性能直接决定了AI产业的发展。
2018年,当微软公司使用25万片FPGA,构造当时世界上最大的AI计算机脑波,据称性能表现超过谷歌研发的专有ASIC,即TPU芯片。
因人机围棋大战出圈的AlphaGo,背后隐藏的AI训练功臣。
Microsoft’s Project Brainwave claims win over Google TPU
同在2018年,美国由NASA牵头,启动了太空高性能计算项目HPSC(High Performance Spaceflight Computing),目标是把空间处理器的计算能力,提升2个数量级以上。
定位为改变未来游戏规则的重要组成。
2024年,杭州的之江实验室提出打造三体计算星座,把算力送上太空,应对在轨卫星数量快速增长带来的算力挑战。
打造一个千星规模的天基智能计算基础设施,建成后总算力可达1000P。
而拥有全球最大的亚米级商业遥感卫星星座的长光卫星,按其科创板IPO申报稿披露:“目前拥有72颗卫星星座,累积存档的数据库遥感数据总量,是13PB。”
商业航天的兴起,把计算与太空再次紧密链接在一起,也将计算卫星推上前台。
使之成为继通信、导航、遥感卫星的第四类“专用”卫星。
作为“Star Compute-星算计划”的合作方,按照商业航天明星初创,国星宇航在其公众号的消息,与软通动力和之江实验室,共同开启太空计算新时代。
端侧高效能计算的神龙教主
如果说在地面的数据中心AI训练,现在是GPU为王,已经成就英伟达霸业的话,那么在空间为代表的端侧数据处理,则是FPGA做主,一直延续到现在的AI时代。
首次在空间领域应用,最早可溯源三十前的1993年。
最先进入航天工程人员视野的,是原Actel公司的高可靠反熔丝芯片Anti-fuse FPGA。到1997年时,已成为火星探测器探路者号(PathFinder)的主要组成单元。
到2004年时,赛灵思的高性能SRAM FPGA在空间领域得到认可,逐步站稳脚跟。现在的空间应用市场份额稳居行业第二,仅屈居收购了Microsemi公司的微芯科技之后。
从作为几代火星车的关键组件使用,到扮演在轨数据的主处理器角色。包括2008年后以SpaceCube为代表的高性能计算,以及现在以Startlink为标杆的低轨卫星数据处理平台。
火星车项目作为SRAM FPGA在航天领域开山之作,也是最著名的应用案例之一,自然出现在赛灵思为庆祝公司为成立25周年时特别出版的专刊。
当期所选二十个最具代表性的客户创新案例,航天领域就占有三席。
在提升在轨处理能力方面,独树一帜。
作为价格亲民的“ASIC”,还支持进行在轨错误修复,甚至功能升级。
现在已经是空间飞行器的关键使能技术,不可或缺。
AI时代的创新成本,在很大程度上由芯片算力成本直接决定。
对于太空应用场景,与地面数据中心可以大规模集群堆算力的使用方式,并不适用。
液冷散热等技术,更是天方夜谭,水中捞月。
空间领域高温差高辐射环境下,只能使用非常有限的电力,完成遥感、通信、数据加工等复杂的计算任务。权衡评估整个系统的PPA要求,更为严苛。
除了综合考虑面积(Size)、重量(Weight)、功耗(Power)和成本(Cost)的SWaP-C指标,现在更是额外增加了为应对数据爆炸的高性能计算需求。
这也使开发抗辐射(Radiation-Hardened)飞行处理器CPU芯片,在制造工艺上做特殊处理的传统路线,以最大化满足可靠和安全作为绝对优先,一招鲜,不再是可以吃遍天。
至少不再像以前那样“有效”。
而这正是高性能FPGA的绝佳机会。
特别是高性能SRAM FPGA,回顾其在航天领域的应用发展,从火星车项目开始起步,在过去的30年间大致经历了三个关键节点:
1993年-2004年,大胆设想,小心求证阶段;
2008年-2018年,空间高性能计算平台诞生;
现在的异构计算时代,太空人工智能来临。
截至目前,在空间使用的处理器算力比较中,FPGA芯片表现优异,说是一枝独秀也不为过。
以至于做抗辐CPU,采用Sparc架构的创业板上市公司航宇微(300053.SZ),当年欧比特在业绩下滑的解释性公告中,FPGA冲得太猛,也是原因之一。
微芯科技在器件级别(Hardened By Device)的抗辐射FPGA芯片RTG4,已经是传统抗辐CPU的1个数量级以上。
AMD的耐辐射(Radiation-Tolerant)技术,需要用户在设计时加固(Design-Level Hardening)的SRAM FPGA芯片,又是前者的数十倍。
并且可预期的性能优势领先优势