数仓建模
文章平均质量分 88
Megustas_JJC
change the world by program
展开
-
多维数据模型
多维数据模型是数据仓库的一大特点,也是数据仓库应用和实现的一个重要的方面,通过在数据的组织和存储上的优化,使其更适用于分析型的数据查询和获取。多维数据模型的定义和作用多维数据模型是为了满足用户从多角度多层次进行数据查询和分析的需要而建立起来的基于事实和维的数据库模型,其基本的应用是为了实现OLAP(Online Analytical Processing)。当然,通过多维数据模型的数据展示、...转载 2018-12-26 13:42:16 · 3610 阅读 · 0 评论 -
星型模型、雪花模型、星座模型及数仓建模方法
整体流程概览(1)数据仓库(Data WareHouse,简称DW):数据仓库是一种资讯系统的资料储存理论,主要功能乃是将组织透过资讯系统之联机交易处理(OLAP)经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,作一有系统的分析整理,以利各种分析方法,例如线上分析处理及数据挖掘之进行,并且进而支持例如决策支持系统及主管资讯系统之创建,帮助决策者能快速有效的自大量资料中,...原创 2018-08-21 11:16:11 · 16962 阅读 · 0 评论 -
数据立方体与OLAP
前面的一篇文章——数据仓库的多维数据模型已经简单介绍过多维模型的定义和结构,以及事实表(Fact Table)和维表(Dimension Table)的概念。多维数据模型作为一种新的逻辑模型赋予了数据新的组织和存储形式,而真正体现其在分析上的优势还需要基于模型的有效的操作和处理,也就是OLAP(On-line Analytical Processing,联机分析处理)。数据立方体关于数据立方体...转载 2018-12-26 15:00:59 · 910 阅读 · 1 评论 -
数据仓库建模:定义事实表粒度及事实表关联非最低粒度的维度的情况
事实表粒度维度建模中一个非常重要的步骤是定义事实表的粒度。定义了事实表的粒度,则事实表能表达数据的详细程度就确定了。定义粒度的例子如下:1.客户的零售单据上的每个条目。2.保险单上的每个交易。定义好事实表的粒度有很大的用处。第一个用处就是用来确定维度是否与该事实表相关。例如,对于粒度细到医疗单据上条目项的事实表来说,医疗结果是不会作为维度和它进行关联的,因为它们不在同一个粒度上。但是,对...原创 2019-01-11 00:33:16 · 2987 阅读 · 0 评论 -
数据仓库的源数据类型
数据仓库中集成了企业几乎所有的可以获取到的数据以用于数据分析和决策支持。进入到数据仓库中的数据无外乎三种类型:结构化数据、半结构化数据和非结构化数据,它们经过转化后以某种形式统一地储存在数据仓库中,即通常说的ETL(Extract, Transform, Load,抽取、转换、装载)的过程。下面主要说一下这三种数据类型的区别,它们分别包括哪些源数据以及这些数据在网站数据分析中的作用。结构化数据...转载 2018-12-26 11:42:20 · 2151 阅读 · 0 评论 -
数据仓库的基本架构
数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。其实数据仓库本身并不“生产”任何数据,同时自身也不需要“消费”任何的数据,数据来源于外部,并且开放给外部应用,这也是为什么叫“仓库”,而不叫“工厂”的原因。因此数据仓库的基本架构主要包含的是数据流入流出的过程,可以分为三层——源数据、数据仓库、数据应用:从图中可以看出数据仓库的数据来源于不同的...转载 2018-12-26 12:15:45 · 352 阅读 · 1 评论