题意:
m个颜色,两个涂色板格子数均为n,要在两个涂色板上涂色,要求两个涂色板上没有相同颜色,求有多少种方式。
题解:
第二类Stirling数来做。
第二类Stirling数 S(p,k)
S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。
k!S(p,k)是把p个人分进k间有差别(如:被标有房号)的房间(无空房)的方法数。
假设第一个涂色板上要用i种颜色,那就是把n个格子上涂i种颜色,再乘以n的全排列,(因为没有固定顺序),然后这i种颜色就是C(m,i)。
然后第二个涂色板上只有(m-i)种颜色了,那么总共就有
(m−i)n
种情况。然后枚举i就可以了。
还要注意如果m如果大于n的话,第一个涂色板上最多只能有n种颜色而不是(m-1)种。
大概就是这样了。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=2e3+5;
const int mod=1e9+7;
ll str[maxn][maxn];
ll a[maxn][maxn],f[maxn];
ll q(ll x,ll n)
{
ll res=1;
while(n)
{
if(n&1) res=res*x%mod;
n>>=1;
x=x*x%mod;
}
return res;
}
void init()
{
for(int i=1;i<=2001;i++)
{
str[i][0]=0;str[i][1]=1;
for(int j=2;j<=i;j++)
{
str[i][j]=(j*str[i-1][j]%mod+str[i-1][j-1])%mod;
}
}
a[0][0]=1;
for(int i=1; i<=maxn; i++)
{
a[i][0]=a[i][i]=1;
for(int j=1; j<i; j++)
{
a[i][j]=(a[i-1][j-1]+a[i-1][j])%mod;
}
}
f[1]=1;
for(int i=2; i<maxn; i++)
{
f[i]=(f[i-1]*i)%mod;
}
}
int main()
{
int t;
scanf("%d",&t);
init();
while(t--)
{
ll n,m;
scanf("%lld %lld",&n,&m);
ll ans=0;
if(m<=n)
for(int i=1; i<m; i++)
{
ans+=(((a[m][i]*f[i])%mod*str[n][i])%mod*q(m-i,n))%mod;
ans%=mod;
}
else
{
for(int i=1; i<=n; i++)
{
ans+=(((a[m][i]*f[i])%mod*str[n][i])%mod*q(m-i,n))%mod;
ans%=mod;
}
}
printf("%lld\n",ans);
}
}