2017第八次多校联合hdu6143

题目

题意:

m个颜色,两个涂色板格子数均为n,要在两个涂色板上涂色,要求两个涂色板上没有相同颜色,求有多少种方式。

题解:

第二类Stirling数来做。
第二类Stirling数 S(p,k)
S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。

k!S(p,k)是把p个人分进k间有差别(如:被标有房号)的房间(无空房)的方法数。

假设第一个涂色板上要用i种颜色,那就是把n个格子上涂i种颜色,再乘以n的全排列,(因为没有固定顺序),然后这i种颜色就是C(m,i)。
然后第二个涂色板上只有(m-i)种颜色了,那么总共就有 min 种情况。然后枚举i就可以了。
还要注意如果m如果大于n的话,第一个涂色板上最多只能有n种颜色而不是(m-1)种。
大概就是这样了。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=2e3+5;
const int mod=1e9+7;
ll str[maxn][maxn];
ll a[maxn][maxn],f[maxn];
ll q(ll x,ll n)
{
    ll res=1;
    while(n)
    {
        if(n&1) res=res*x%mod;
        n>>=1;
        x=x*x%mod;
    }
    return res;
}
void init()
{
    for(int i=1;i<=2001;i++)
    {
        str[i][0]=0;str[i][1]=1;
        for(int j=2;j<=i;j++)
        {
            str[i][j]=(j*str[i-1][j]%mod+str[i-1][j-1])%mod;
        }
    }
    a[0][0]=1;
    for(int i=1; i<=maxn; i++)
    {
        a[i][0]=a[i][i]=1;
        for(int j=1; j<i; j++)
        {
            a[i][j]=(a[i-1][j-1]+a[i-1][j])%mod;
        }
    }
    f[1]=1;
    for(int i=2; i<maxn; i++)
    {
        f[i]=(f[i-1]*i)%mod;
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    init();
    while(t--)
    {
        ll n,m;
        scanf("%lld %lld",&n,&m);
        ll ans=0;
        if(m<=n)
            for(int i=1; i<m; i++)
            {
                ans+=(((a[m][i]*f[i])%mod*str[n][i])%mod*q(m-i,n))%mod;
                ans%=mod;
            }
        else
        {
            for(int i=1; i<=n; i++)
            {
                ans+=(((a[m][i]*f[i])%mod*str[n][i])%mod*q(m-i,n))%mod;
                ans%=mod;
            }

        }
        printf("%lld\n",ans);
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值