题目链接
非常震惊,这竟然是我以前做过的题,然后看了半天一点都没有想起是SG函数。
GG。
之前博弈习题里有这一道题,但是写的不好,重新写一下。
S-Nim
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 4658 Accepted: 2440
Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:
The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
The players take turns chosing a heap and removing a positive number of beads from it.
The first player not able to make a move, loses.
Arthur and Caroll really enjoyed playing this simple game until they
recently learned an easy way to always be able to find the best move:
Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
If the xor-sum is 0, too bad, you will lose.
Otherwise, move such that the xor-sum becomes 0. This is always possible.
It is quite easy to convince oneself that this works. Consider these facts:
The player that takes the last bead wins.
After the winning player's last move the xor-sum will be 0.
The xor-sum will change after every move.
Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.
Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S = {2, 5} each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?
your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
Input
Input consists of a number of test cases.
For each test case: The first line contains a number k (0 < k ≤ 100) describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps.
The last test case is followed by a 0 on a line of its own.
Output
For each position: If the described position is a winning position print a ‘W’.If the described position is a losing position print an ‘L’.
Print a newline after each test case.
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
Sample Output
LWW
WWL
数据范围只有到10000,所以给定可拿石子集之后,枚举1-10000的SG值,也就是考虑每个数的所有后继情况的mex,存下来之后,对于每一个所给情况直接异或判断就可以了。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int num[105];
int dp[10005],vis[10005];
int n,m;
const int maxx = 10005;
int main()
{
while(~scanf("%d",&n) && n)
{
memset(num,0,sizeof num);
memset(dp,0,sizeof dp);
for (int i = 0; i < n; i++)
{
scanf("%d",&num[i]);
}
sort(num,num + n);
dp[0] = 0;
for (int i = 1; i < maxx; i++)
{
memset(vis,0,sizeof vis);
for (int j = 0; j < n; j++)
{
if(i - num[j] >= 0)
vis[dp[i - num[j]]] = 1;
else break;
}
for (int j = 0;; j++)
if(!vis[j])
{
dp[i] = j;
break;
}
}
scanf("%d",&m);
for (int i = 0; i < m; i++)
{
int mnum,ans = 0,k;
scanf("%d",&mnum);
for (int j = 0; j < mnum; j++)
{
scanf("%d",&k);
ans = ans^(dp[k]);
}
if(ans == 0)
printf("L");
else printf("W");
}
printf("\n");
}
}