问题及代码:
/*
*烟台大学计算机控制与工程学院
*作 者:刘倩
*完成日期:2016年10月23日
*问题描述:提示1:两个行数、列数相同的矩阵可以相加
提示2:充分利用已经建立好的算法库解决问题
*/
(1)tup.h代码
#define M 6
#define N 7
#define MaxSize 100 //矩阵中非零元素最多个数
typedef int ElemType;
typedef struct
{
int r; //行号
int c; //列号
ElemType d; //元素值
} TupNode; //三元组定义
typedef struct
{
int rows; //行数
int cols; //列数
int nums; //非零元素个数
TupNode data[MaxSize];
} TSMatrix; //三元组顺序表定义
void CreatMat(TSMatrix &t,ElemType A[M][N]); //从一个二维稀疏矩阵创建其三元组表示
bool Value(TSMatrix &t,ElemType x,int i,int j); //三元组元素赋值
bool Assign(TSMatrix t,ElemType &x,int i,int j); //将指定位置的元素值赋给变量
void DispMat(TSMatrix t);//输出三元组
void TranTat(TSMatrix t,TSMatrix &tb);//矩阵转置
bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c);
(2)tup.cpp代码
#include "stdio.h"
#include "tup.h"
void CreatMat(TSMatrix &t,ElemType A[M][N]) //从一个二维稀疏矩阵创建其三元组表示
{
int i,j;
t.rows=M;
t.cols=N;
t.nums=0;
for (i=0; i<M; i++)
{
for (j=0; j<N; j++)
if (A[i][j]!=0) //只存储非零元素
{
t.data[t.nums].r=i;
t.data[t.nums].c=j;
t.data[t.nums].d=A[i][j];
t.nums++;
}
}
}
bool Value(TSMatrix &t,ElemType x,int i,int j) //三元组元素赋值
{
int k=0,k1;
if (i>=t.rows || j>=t.cols)
return false; //失败时返回false
while (k<t.nums && i>t.data[k].r) k++; //查找行
while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列
if (t.data[k].r==i && t.data[k].c==j) //存在这样的元素
t.data[k].d=x;
else //不存在这样的元素时插入一个元素
{
for (k1=t.nums-1; k1>=k; k1--)
{
t.data[k1+1].r=t.data[k1].r;
t.data[k1+1].c=t.data[k1].c;
t.data[k1+1].d=t.data[k1].d;
}
t.data[k].r=i;
t.data[k].c=j;
t.data[k].d=x;
t.nums++;
}
return true; //成功时返回true
}
bool Assign(TSMatrix t,ElemType &x,int i,int j) //将指定位置的元素值赋给变量
{
int k=0;
if (i>=t.rows || j>=t.cols)
return false; //失败时返回false
while (k<t.nums && i>t.data[k].r) k++; //查找行
while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列
if (t.data[k].r==i && t.data[k].c==j)
x=t.data[k].d;
else
x=0; //在三元组中没有找到表示是零元素
return true; //成功时返回true
}
void DispMat(TSMatrix t) //输出三元组
{
int i;
if (t.nums<=0) //没有非零元素时返回
return;
printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);
printf("\t------------------\n");
for (i=0; i<t.nums; i++)
printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d);
}
void TranTat(TSMatrix t,TSMatrix &tb) //矩阵转置
{
int p,q=0,v; //q为tb.data的下标
tb.rows=t.cols;
tb.cols=t.rows;
tb.nums=t.nums;
if (t.nums!=0) //当存在非零元素时执行转置
{
for (v=0; v<t.cols; v++) //tb.data[q]中的记录以c域的次序排列
for (p=0; p<t.nums; p++) //p为t.data的下标
if (t.data[p].c==v)
{
tb.data[q].r=t.data[p].c;
tb.data[q].c=t.data[p].r;
tb.data[q].d=t.data[p].d;
q++;
}
}
}
bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c)
{
int i,j;
ElemType va,vb,vc;
if (a.rows!=b.rows || a.cols!=b.cols)
return false; //行数或列数不等时不能进行相加运算
c.rows=a.rows;
c.cols=a.cols; //c的行列数与a的相同
c.nums=0;
for(i=0; i<M; i++)
for(j=0; j<N; j++)
{
Assign(a,va,i,j);
Assign(b,vb,i,j);
vc=va+vb;
if(vc)
Value(c,vc,i,j);
}
return true;
}
(3)main.cpp代码
#include <stdio.h>
#include "tup.h"
int main()
{
TSMatrix ta,tb,tc;
int A[M][N]=
{
{0,0,1,0,0,0,0},
{0,2,0,0,0,0,0},
{3,0,0,0,0,0,0},
{0,0,0,5,0,0,0},
{0,0,0,0,6,0,0},
{0,0,0,0,0,7,4}
};
int B[M][N]=
{
{0,0,10,0,0,0,0},
{0,0,0,20,0,0,0},
{0,0,0,0,0,0,0},
{0,0,0,50,0,0,0},
{0,0,20,0,0,0,0},
{0,0,0,10,0,0,4}
};
CreatMat(ta,A);
CreatMat(tb,B);
printf("A:\n");
DispMat(ta);
printf("B:\n");
DispMat(tb);
if(MatAdd(ta, tb, tc))
{
printf("A+B:\n");
DispMat(tc);
}
else
{
printf("相加失败\n");
}
return 0;
}
运行结果:
知识点总结:
对比两种方案,“参考解答1”利用Assign和Value两个基本运算的方案,可以在只知道“矩阵加法是对应位置的元素相加”的基础上就可以求解;而“参考解答2”则不得不关注在数据存储层面的细节,以致于矩阵加法的规则都不容易看出来了。“参考解答2”中繁杂的代码,违反了程序设计中诸多的原则(例如模块化),相对“参考解答1”的简洁中透出的优雅,该不是学习者效仿的思维。
学习心得:
虽然可以看懂,但是自己亲自打出来却很难。