第九周项目3--稀疏矩阵的三元组表示的实现及应用--(2)两个稀疏矩阵相加的运算

本文介绍了如何使用三元组表示实现稀疏矩阵相加,对比了两种不同的实现方案,强调了简洁代码的重要性,并分享了学习过程中遇到的挑战和心得。
摘要由CSDN通过智能技术生成

问题及代码:

/*    
*烟台大学计算机控制与工程学院     
*作    者:刘倩    
*完成日期:2016年10月23日 
*问题描述:提示1:两个行数、列数相同的矩阵可以相加  
           提示2:充分利用已经建立好的算法库解决问题
*/  

(1)tup.h代码

#define M 6  
#define N 7  
#define MaxSize  100         //矩阵中非零元素最多个数  
typedef int ElemType;  

typedef struct  
{  
    int r;                  //行号  
    int c;                  //列号  
    ElemType d;             //元素值  
} TupNode;                  //三元组定义  

typedef struct  
{  
    int rows;               //行数  
    int cols;               //列数  
    int nums;               //非零元素个数  
    TupNode data[MaxSize];  
} TSMatrix;                 //三元组顺序表定义  

void CreatMat(TSMatrix &t,ElemType A[M][N]);  //从一个二维稀疏矩阵创建其三元组表示  
bool Value(TSMatrix &t,ElemType x,int i,int j);  //三元组元素赋值  
bool Assign(TSMatrix t,ElemType &x,int i,int j); //将指定位置的元素值赋给变量  
void DispMat(TSMatrix t);//输出三元组  
void TranTat(TSMatrix t,TSMatrix &tb);//矩阵转置  
bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c);  
(2)tup.cpp代码

#include "stdio.h"  
#include "tup.h"  
  
void CreatMat(TSMatrix &t,ElemType A[M][N])  //从一个二维稀疏矩阵创建其三元组表示  
{  
    int i,j;  
    t.rows=M;  
    t.cols=N;  
    t.nums=0;  
    for (i=0; i<M; i++)  
    {  
        for (j=0; j<N; j++)  
            if (A[i][j]!=0)     //只存储非零元素  
            {  
                t.data[t.nums].r=i;  
                t.data[t.nums].c=j;  
                t.data[t.nums].d=A[i][j];  
                t.nums++;  
            }  
    }  
}  
  
bool Value(TSMatrix &t,ElemType x,int i,int j)  //三元组元素赋值  
{  
    int k=0,k1;  
    if (i>=t.rows || j>=t.cols)  
        return false;               //失败时返回false  
    while (k<t.nums && i>t.data[k].r) k++;                  //查找行  
    while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列  
    if (t.data[k].r==i && t.data[k].c==j)   //存在这样的元素  
        t.data[k].d=x;  
    else                                    //不存在这样的元素时插入一个元素  
    {  
        for (k1=t.nums-1; k1>=k; k1--)  
        {  
            t.data[k1+1].r=t.data[k1].r;  
            t.data[k1+1].c=t.data[k1].c;  
            t.data[k1+1].d=t.data[k1].d;  
        }  
        t.data[k].r=i;  
        t.data[k].c=j;  
        t.data[k].d=x;  
        t.nums++;  
    }  
    return true;                        //成功时返回true  
}  
  
bool Assign(TSMatrix t,ElemType &x,int i,int j)  //将指定位置的元素值赋给变量  
{  
    int k=0;  
    if (i>=t.rows || j>=t.cols)  
        return false;           //失败时返回false  
    while (k<t.nums && i>t.data[k].r) k++;                  //查找行  
    while (k<t.nums && i==t.data[k].r && j>t.data[k].c) k++;//查找列  
    if (t.data[k].r==i && t.data[k].c==j)  
        x=t.data[k].d;  
    else  
        x=0;                //在三元组中没有找到表示是零元素  
    return true;            //成功时返回true  
}  
  
void DispMat(TSMatrix t)        //输出三元组  
{  
    int i;  
    if (t.nums<=0)          //没有非零元素时返回  
        return;  
    printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);  
    printf("\t------------------\n");  
    for (i=0; i<t.nums; i++)  
        printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c,t.data[i].d);  
}  
  
void TranTat(TSMatrix t,TSMatrix &tb)       //矩阵转置  
{  
    int p,q=0,v;                    //q为tb.data的下标  
    tb.rows=t.cols;  
    tb.cols=t.rows;  
    tb.nums=t.nums;  
    if (t.nums!=0)                  //当存在非零元素时执行转置  
    {  
        for (v=0; v<t.cols; v++)        //tb.data[q]中的记录以c域的次序排列  
            for (p=0; p<t.nums; p++)    //p为t.data的下标  
                if (t.data[p].c==v)  
                {  
                    tb.data[q].r=t.data[p].c;  
                    tb.data[q].c=t.data[p].r;  
                    tb.data[q].d=t.data[p].d;  
                    q++;  
                }  
    }  
}  
bool MatAdd(TSMatrix a,TSMatrix b,TSMatrix &c)  
{  
    int i,j;  
    ElemType va,vb,vc;  
    if (a.rows!=b.rows || a.cols!=b.cols)  
        return false;                        //行数或列数不等时不能进行相加运算  
    c.rows=a.rows;  
    c.cols=a.cols;       //c的行列数与a的相同  
    c.nums=0;  
    for(i=0; i<M; i++)  
        for(j=0; j<N; j++)  
        {  
            Assign(a,va,i,j);  
            Assign(b,vb,i,j);  
            vc=va+vb;  
            if(vc)  
                Value(c,vc,i,j);  
        }  
    return true;  
}  

(3)main.cpp代码

#include <stdio.h>  
#include "tup.h"  
int main()  
{  
    TSMatrix ta,tb,tc;  
    int A[M][N]=  
    {  
        {0,0,1,0,0,0,0},  
        {0,2,0,0,0,0,0},  
        {3,0,0,0,0,0,0},  
        {0,0,0,5,0,0,0},  
        {0,0,0,0,6,0,0},  
        {0,0,0,0,0,7,4}  
    };  
    int B[M][N]=  
    {  
        {0,0,10,0,0,0,0},  
        {0,0,0,20,0,0,0},  
        {0,0,0,0,0,0,0},  
        {0,0,0,50,0,0,0},  
        {0,0,20,0,0,0,0},  
        {0,0,0,10,0,0,4}  
    };  
    CreatMat(ta,A);  
    CreatMat(tb,B);  
    printf("A:\n");  
    DispMat(ta);  
    printf("B:\n");  
    DispMat(tb);  
    if(MatAdd(ta, tb, tc))  
    {  
        printf("A+B:\n");  
        DispMat(tc);  
    }  
    else  
    {  
        printf("相加失败\n");  
    }  
    return 0;  
}
运行结果:



知识点总结:

对比两种方案,“参考解答1”利用Assign和Value两个基本运算的方案,可以在只知道“矩阵加法是对应位置的元素相加”的基础上就可以求解;而“参考解答2”则不得不关注在数据存储层面的细节,以致于矩阵加法的规则都不容易看出来了。“参考解答2”中繁杂的代码,违反了程序设计中诸多的原则(例如模块化),相对“参考解答1”的简洁中透出的优雅,该不是学习者效仿的思维。

学习心得:

虽然可以看懂,但是自己亲自打出来却很难。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值