质数环

本文探讨了如何生成大小为N的质数环,其中相邻数字之和为质数的问题。当N为偶数时,通过递归算法可以找到所有本质不同的数环。样例展示了N=6时的解决方案,并提供了源代码实现和测试结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

一个大小为N(N<=17)的质数环是由1到N共N个自然数组成的一个数环,数环上每两个相邻的数字之和为质数。如下图是一个大小为6的质数环。为了方便描述,规定数环上的第一个数字总是1。如下图可用1 4 3 2 5 6来描述。若两个质数环,数字排列顺序相同则视为本质相同。现在要求你求出所有本质不同的数环。

输入描述

只有一个数N,表示需求的质数环的大小。如:

输出描述

每一行描述一个数环,如果有多组解,按照字典序从小到大输出。如:

样例输入

6

样例输出

1 4 3 2 5 6

1 6 5 2 3 4

问题分析

首先通过分析题目描述“相邻数字之和为质数”可以得出最后形成环的数字肯定是奇偶交替,因为偶数和偶数,奇数和奇数之和肯定不是质数(偶数)。当输入N为奇数时,环肯定以奇偶奇偶。。。奇排列,但是因为是环的原因,首部奇数和尾部奇数之和为偶数,肯定不是质数,因此当

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值