java 实现TextRank算法提取文章摘要

该文介绍了如何使用Java实现基于TextRank的文章摘要提取。通过分句、计算句子权重和排序,利用HanLP库进行分词和相似度计算,最终提取出文章的关键内容。
摘要由CSDN通过智能技术生成

在 Java 中,常用的文章摘要提取库是 “TextRank” 算法。该算法从文本中提取主题和段落,并根据主题和文本中的单词计算权重。使用 TextRank 实现文章摘要提取具体步骤如下:

  1. 寻找文章中的关键句子:首先需要分割出文章中的句子,可以使用分词库将文章拆分成句子,然后使用 TextRank 算法找到文章中与主题相关的句子,这些句子通常包含有标题、关键字等。

  2. 计算句子的权重:针对关键句子,需要对每个句子计算权重,使用 TextRank 算法可以计算每个句子与文章内容的相关性以及与其他句子的相关性。

  3. 提取文本摘要:在计算完句子权重后,可以按权重排序提取文章中排名靠前的几个句子作为文章摘要。

实现这个流程的 Java 代码参考如下:

public static String getSummary(String text) {
    // 分割句子
    List<String> sentenceList = splitSentence(text);
    int sentenceCount = sentenceList.size();

    // 计算每个句子的分数
    double[] scores = new double[sentenceCount];
    Arrays.fill(scores, 1.0);
    for (int i = 0; i < 10; i++) { // 自定义 TextRank 迭代次数
        double[] tempScores = Arrays.copyOf(scores, scores.length);
        for (int j = 0; j < sentenceCount; j++) {
            double score = 0.0;
            for (int k = 0; k < sentenceCount; k++) {
                if (k != j) {
                    score += similarity(sentenceList.get(j), sentenceList.get(k));
                }
            }
            tempScores[j] = 0.15 + 0.85 * score;
        }
        scores = tempScores;
    }

    // 排序提取文本摘要
    int summarySize = Math.max(sentenceCount / 10, 1);
    PriorityQueue<Sentence> queue = new PriorityQueue<>(summarySize);
    for (int i = 0; i < sentenceCount; i++) {
        queue.offer(new Sentence(scores[i], i));
    }
    List<Integer> indexList = new ArrayList<>();
    for (int i = 0; i < summarySize; i++) {
        indexList.add(queue.poll().index);
    }
    Collections.sort(indexList);
    StringBuilder summary = new StringBuilder();
    for (Integer index : indexList) {
        summary.append(sentenceList.get(index)).append("。");
    }
    return summary.toString();
}

/**
 * 分割句子
 */
private static List<String> splitSentence(String text) {
    List<String> sentenceList = new ArrayList<>();
    String[] sentences = text.split("[\\n。?!;]");
    for (String sentence : sentences) {
        sentence = sentence.trim();
        if (sentence.length() > 0) {
            sentenceList.add(sentence);
        }
    }
    return sentenceList;
}

/**
 * 计算句子相似度
 */
private static double similarity(String sentence1, String sentence2) {
        // 使用余弦相似度计算
        List<String> words1 = HanLP.segment(sentence1).stream().map(term -> term.word).collect(Collectors.toList());
        List<String> words2 = HanLP.segment(sentence2).stream().map(term -> term.word).collect(Collectors.toList());
        int intersection = CollectionUtils.intersection(words1, words2).size();
        return intersection/Math.sqrt(words1.size() * words2.size());
    }

/**
 * 句子类,用于保存句子分数和句子在文章中的索引
 */
private static class Sentence implements Comparable<Sentence> {
    double score;
    int index;

    public Sentence(double score, int index) {
        this.score = score;
        this.index = index;
    }

    @Override
    public int compareTo(Sentence o) {
        return Double.compare(o.score, score);
    }
}

其中, "HanLP是一个开源的自然语言处理库,可以用于分词、词性标注、命名实体识别等任务,可以使用 Maven 依赖直接引入项目中:

<dependency>
    <groupId>com.hankcs</groupId>
    <artifactId>hanlp</artifactId>
    <version>portable-1.7.8</version>
</dependency>

上述代码中,分割句子使用了一个开源的分词库 HanLP,计算文本相似度使用了余弦相似度,排序使用 Java 中自带的 PriorityQueue 数据结构。

最后,需要注意的是,使用 TextRank 算法提取文章摘要是一种启发式算法,不能保证一定能够提取到正确的文章摘要,所以需要结合具体业务的需求和情况进行调整和优化。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值