深度学习
melody96313
这个作者很懒,什么都没留下…
展开
-
keras框架
图片的数据格式:channels_first:(样本维,通道维,高,宽) theano,chanDim=1channels_last:(样本维,高,宽,通道维) tensorflow,chanDim=-1对于RGB的图片,通道维往往是3。keras的底层既可以是theano,也可以是 tensorflow,在进行batchnormalization时要注意这个from keras.models...原创 2018-05-19 19:36:38 · 717 阅读 · 0 评论 -
行人重识别论文阅读笔记(一)FD-GAN:Pose-guided Feature Distilling GAN for Robust Person Re-identification
这篇文章的大致思想是:用GAN来对行人的特征进行蒸馏,只保留和身份信息有关的特征,而去除了人体姿态这些冗余的特征信息。而在推断的时候,只需用到encoder提取的鲁棒特征就可以了,没有增加额外的计算量。即:为了应对多种多样的姿态变化-->学习到和身份信息有关,而和姿态信息无关的特征表达。数据库:Market-1501, CUHK03 , DukeMTMC-reID网络输入:每个分支...原创 2018-11-05 21:21:58 · 2849 阅读 · 1 评论 -
目标跟踪论文阅读笔记(一)Learning regression and verification networks for long-term visual tracking
这一篇又是大连理工卢湖川教授团队的论文,所以我觉得应该质量挺高的,所以今天来阅读一下。针对的是长期跟踪,经常会出现目标消失的情况(这个在短期跟踪里基本没有),然后又有可能重现回到视野内。本文提出了的算法将一个基于匹配思想的回归网络V(通用的匹配函数,类似于siamfc)和分类网络R协同起来,回归网络主要来生成一些概率比较大(得分高)的候选区域,这个网络需要去学习到鲁棒,可以抵抗目标形变的特...原创 2018-11-06 20:29:58 · 1179 阅读 · 1 评论 -
SVDNet for Pedestrian Retrieval
SVDNet for Pedestrian Retrieval文章链接: arXiv:1703.05693代码链接:syfafterzy/SVDNet-for-Pedestrian-Retrieval知乎链接:https://zhuanlan.zhihu.com/p/29326061这篇文章认为,神经网络提取的特征经常会比较冗余,不够正交化。文章的思路虽然用在了reid里,但是可以...转载 2018-10-22 22:48:21 · 312 阅读 · 0 评论 -
深度学习入门学习(一)
在图像分类问题上,普通的机器学习算法都是将二维或者三维的像素矩阵拓展成一维的,而这个过程其实丢失了很多图像原本的结构特征,比如说边缘,纹理等等。一维的像素往往直接用来做特征,或者先做一个降维再去做特征。而且,如果是彩色图像,机器学习往往会把颜色类似的图像分成一类(比如蓝天,绿色的草原),准确度不高,而且分类的依据非常不合理。softmax就是将简单的二分类问题扩展成了多分类问题。对于一个十元分原创 2018-02-04 23:12:29 · 252 阅读 · 0 评论 -
Ng deep learning 专项课程第四门CNN卷积神经网络 课程笔记一
一、基本知识神经网络由于参数众多,结构复杂,经常会面临过拟合的问题。和全连接网络相比,卷积神经网络的优势在于其通过参数共享机制和滑动窗口的思想,使得每层参数的个数大大减少。从而在一定程度上降低了过拟合的程度。而且在图像处理中,也经常会用到卷积和模板、算子这些概念来提取图像的各类特征,所以看出将图像处理应用在卷积神经网络上很合适。二者都是在提取特征,只不过不同的是,神经网络是自己生成的特征filte...原创 2018-05-17 10:14:36 · 295 阅读 · 0 评论 -
使用tensorflowl的高级API——tf.data来导入训练网络所需数据
之前我是用tf.records来处理训练数据的。但是这次训练的数据比较特殊,输入不是图像,而是256通道的feature map(数据格式我保存成了npy)。所以这次,我换了一种导入数据的方式——tf.data创建dataset #创建dataset的占位符 x=tf.placeholder(tf.float32,shape=[None,6,6,256]) y=tf.placehol...原创 2019-05-07 18:03:00 · 946 阅读 · 0 评论