python机器学习之十四 python数据可视化 matplotlib

matplotlib Matplotlib 是一个非常强大的 Python 画图工具; 支持图像:线图、散点图、等高线图、条形图、柱状图、3D 图形、甚至是图形动画 本文将会给大家介绍最常用的 散点图及3D图形 1.matplotlib 安装 首先 你得有一个python+pip 然...

2019-07-10 16:53:09

阅读数 20

评论数 0

python机器学习之十三 numpy库下的文件读写

本文将介绍python numpy库下文件读写的三种方式,分别是: tofile()和fromfile() save()和load() savetxt()和loadtxt() 1.tofile()和fromfile() tofile() 将数组中的数据以二进制格式写进文件 语法...

2019-07-10 10:57:36

阅读数 16

评论数 0

python机器学习之十二 文件读写

本篇将会介绍python中的文件读写,包括 一般文件读写 读文件 写文件 读文件 ①打开文件 方式一:open 语法格式: f=open("文件路径",'r') r表示是读取文本文件,rb是二进制文件。(参数默认值就是r) 如果读取文件不存在,open...

2019-05-28 14:44:22

阅读数 26

评论数 0

python机器学习之十一 numpy库之矩阵(matrix)

本文主要介绍numpy库中的矩阵: 矩阵的创建 常见的矩阵运算 矩阵、列表、数组之间的转换 矩阵的创建 语法格式: numpy.matrix(data,dtype) data:数据 dtype:数据类型,同数组 如: m2 = np.matrix([[1,2,3],[4,5,...

2019-05-20 13:23:50

阅读数 119

评论数 0

python机器学习之十 numpy库之数组(多维数组的一元操作、组合数组、数组分割、数组复制)

本篇主要介绍numpy中的数组操作: 1.多维数组的一元操作 2.组合数组 3.数组分割 4.数组复制 1.多维数组的一元操作 sum min max amax amin mean add multiply np.abs(a) np.fabs(a) : 取各元素的绝对值 np....

2019-05-09 13:41:40

阅读数 27

评论数 0

python机器学习之九 numpy库之数组(数组的索引、切片;多维数组的基本操作)

本篇主要介绍numpy中的数组操作: 数组的索引、切片 多维数组的基本操作 1.数组的索引、切片 数组索引、切片主要有以下三个特点: ①数组索引从0开始 ②可以反向索引 ③可以对每一个维度都可以进行切片 '''数组下标从0开始,指的任意维度,下标都从0开始''' a = np....

2019-04-29 14:35:06

阅读数 42

评论数 0

python机器学习之八 numpy库之数组(创建数组、查看数组属性、创建特殊类型的多维数组)

NumPy NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy运算效率极好,是大量机器学习框架的基础库。 使用numpy库中的函数前,需使用import关键字引入numpy库,本博客采用以下方式引入numpy: ...

2019-04-28 14:01:24

阅读数 73

评论数 0

python机器学习之七 python函数

本篇开始学习python的函数,将会介绍 函数的定义 函数的调用 函数的参数传递 函数的返回值 局部变量及全局变量 函数的定义 函数是一段代码的表示 函数是一段具有特定功能的、可重用的语句组 函数是一种功能的抽象,一般函数表达特定功能 两个作用:降低编程难度 和 代码复用 语法结...

2019-04-11 11:15:47

阅读数 44

评论数 0

python机器学习之六 python的控制结构之循环结构

循环结构 根据判断条件,循环执行相应语句或语句块 在循环结构里,将会向大家介绍: 遍历循环 无限循环 循环控制字保留字 continue break 1.遍历循环 遍历某个结构形成的循环运行方式 语法格式: for <循环变量> in <...

2019-04-10 11:38:26

阅读数 24

评论数 0

python机器学习之五 python的控制结构之顺序结构及分支结构

程序语言在执行时,一共有三种结构: 顺序结构:语句顺序执行 分支结构:到某个节点后,根据条件选择相应语句或语句块执行 循环结构:根据判断条件,循环执行相应语句或语句块 接下来,将开始这三种控制结构的学习。 顺序结构 顺序结构顾名思义,即是代码由上至下执行,没有分支也没有循环...

2019-04-09 14:40:38

阅读数 30

评论数 0

python机器学习之四 输入输出及库引用

前面三篇文章,我们初步学习了python里的基本数据类型(字符、数字、列表),python其实还有些其它的数据类型:元祖、字典等,在机器学习系列介绍完毕后,后续文章将会将python的数据类型补充完毕。 接下来,我们开始python的基本语法知识学习之四:输入输出函数及库引用。 1.输入函数 ...

2019-04-03 13:49:17

阅读数 49

评论数 0

python机器学习之三 数据类型之列表

回顾一下之前我们一起学习的入门小程序 #CurrencyConvert.py CurrencyStr = input("请输入带有符号的货币值: ") if CurrencyStr[-1] in ['Y', '$']: #人民币转美元 if CurrencyStr[-1...

2019-04-02 16:06:32

阅读数 34

评论数 0

python机器学习之二 数据类型之数字

数据类型之 数字 数字类型,顾名思义就是用于存储数字。这篇文章将会介绍 数字类型:整数、浮点数 运算规则 数值运算函数 abs(x) divmod(x,y) pow(x, y[, z]) round(x[, d]) max(x1,x2, … ,xn) min(x1,x2, … ,...

2018-12-27 15:31:42

阅读数 54

评论数 0

python机器学习之一 命名和保留字 字符串

python学习系列将会介绍在机器学习里大家将会用到的python语法知识: 命名与保留字、数据类型(字符、数据、列表)、输入输出、库引用、控制结构、文件读写、函数 机器学习中常用到的两个包的一些用法 numpy:NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理...

2018-11-25 11:40:42

阅读数 163

评论数 0

微信小程序 模板消息

微信程序模板消息:在用户服务通知里以微信消息的方式推送给用户。 最后效果如下: ​ 第一步:进入微信公众平台,添加模板消息 可以在模板库中选择已有的模板消息 点击选用后,进入模板消息配置页面,对于选用的模板,可以配置提交的关键词种类和顺序,如本文示例,选择了资源类型、资源概要、发布...

2018-10-23 15:05:19

阅读数 186

评论数 0

微信小程序 省市区三级地址选择实现

国际惯例 上效果图: 省市区三级联动,选择省自动刷新市,选择市自动刷新区,点击取消自动返回上一级重新选择,点击确定,保存地址。 数据库 这份数据库是某天在网上逛到的,当时未记录出处,直接贴出给读者使用,实在不妥,此处仅贴出表结构,方便大家交流学习。如有读者了解此份数据出处,烦请留言,谢谢...

2018-09-06 16:46:14

阅读数 4312

评论数 7

微信小程序 评论留言功能实现 仿知乎

  最近沉迷学习无法自拔,太久没有码字,码一个小程序留言功能实现。先上一波最后效果图: (删除按钮,是用户自己的留言时才会显示该按钮) 实现技术   后台:SSM框架   数据库:MySQL数据库 数据库设计   评论功能的实现主要涉及三个表 comment:存储留言评论信息,表...

2018-08-30 17:26:44

阅读数 18399

评论数 38

吴恩达的机器学习编程作业20:recoverData pca投影后的数据还原为未投影

function X_rec = recoverData(Z, U, K) %RECOVERDATA Recovers an approximation of the original data when using the %projected data % X_rec = RECOVE...

2018-08-28 16:45:09

阅读数 301

评论数 0

吴恩达的机器学习编程作业19 projectData pca计算压缩后的数据

function Z = projectData(X, U, K) %PROJECTDATA Computes the reduced data representation when projecting only %on to the top k eigenvectors % Z = ...

2018-08-28 16:44:04

阅读数 105

评论数 0

吴恩达的机器学习编程作业18:pca pca压缩数据

function [U, S] = pca(X) %PCA Run principal component analysis on the dataset X % [U, S, X] = pca(X) computes eigenvectors of the covariance matri...

2018-08-28 16:42:38

阅读数 193

评论数 0

提示
确定要删除当前文章?
取消 删除