P2572 [SCOI2010]序列操作 珂朵莉树做法

注意:

数据被加强了!并非正解!

 

//#pragma GCC optimize("O3")
#include<bits/stdc++.h>
using namespace std;
#define SET0(a) memset(a,0,sizeof(a))
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define DWN(i,a,b) for(int i=(a);i>=(b);i--)
typedef long long ll;
inline int read() 
{
    register int x=0,f=1;register char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    return x*f;
}
#define IT set<node>::iterator
int n,m,op;
struct node{
    int l,r;
    mutable bool v;
    node(int L,int R=-1,bool V=0):l(L),r(R),v(V){}
    bool operator<(const node &o)const{
        return l<o.l;
    }
};
set<node>s;

IT split(int p){
    IT it=s.lower_bound(node(p));
    if(it->l==p && it!=s.end()) return it;
    it--;

    int L=it->l; int R=it->r; bool V=it->v;
    s.erase(it);
    s.insert(node(L,p-1,V));
    return s.insert(node(p,R,V)).first;
}

void assign(int l,int r,bool v){
    IT itr=split(r+1); IT itl=split(l);
    s.erase(itl,itr);
    s.insert(node(l,r,v));
}

void change(int l,int r){
    IT itr=split(r+1); IT itl=split(l);
    for(;itl!=itr;itl++){
        itl->v=!itl->v;
    }
}

int sum(int l,int r){
    IT itr=split(r+1); IT itl=split(l);

    int res=0;
    for(;itl!=itr;itl++){
        if(itl->v) res+=itl->r-itl->l+1;
    }
    return res;
}

int cal(int l,int r){
    IT itr=split(r+1); IT itl=split(l);

    int cnt=0;
    int rec=0;
    for(;itl!=itr;itl++){
        if(itl->v){ 
            cnt+=itl->r-itl->l+1;
        }
        else{
            rec=max(rec,cnt);
            cnt=0;
        }
    }
    return max(rec,cnt);
}


int main(){
    cin>>n>>m;
    FOR(i,0,n-1){
        bool val;
        val=read();
        s.insert(node(i,i,val));
    }
    s.insert(node(n,n,0));
    //init
    
    FOR(i,1,m){
        op=read(); int l=read();int r=read();
        switch (op)
        {
        case 0:
            assign(l,r,0);
            break;
        
        case 1:
            assign(l,r,1);
            break;
        
        case 2:
            change(l,r);
            break;
        
        case 3:
            cout<<sum(l,r)<<endl;
            break;

        case 4:
            cout<<cal(l,r)<<endl;
            break;

        default:
            break;
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值